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Abstract. This text is an exposition of non-Archimedean curves and Schottky uniformization from
the point of view of Berkovich geometry. It consists of two parts, the first one of an introductory
nature, and the second one more advanced. The first part is meant to be an introduction to the
theory of Berkovich spaces focused on the case of the affine line. We define the Berkovich affine
line and present its main properties, with many details: classification of points, path-connectedness,
metric structure, variation of rational functions, etc. Contrary to many other introductory texts, we
do not assume that the base field is algebraically closed. The second part is devoted to the theory of
Mumford curves and Schottky uniformization. We start by briefly reviewing the theory of Berkovich
curves, then introduce Mumford curves in a purely analytic way (without using formal geometry).
We define Schottky groups acting on the Berkovich projective line, highlighting how geometry and
group theory come together to prove that the quotient by the action of a Schottky group is an
analytic Mumford curve. Finally, we present an analytic proof of Schottky uniformization, showing
that any analytic Mumford curves can be described as a quotient of this kind. The guiding principle
of our exposition is to stress notions and fully prove results in the theory of non-Archimedean curves
that, to our knowledge, are not fully treated in other texts.
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Introduction

The purpose of the present survey is to provide an introduction to non-Archimedean analytic
geometry from the perspective of uniformization of curves. The main characters of this compelling
story are analytic curves over a non-Archimedean complete valued field (k, | · |), and Schottky groups.
The main difficulty in establishing a theory of non-Archimedean analytic spaces over k is that
the natural topology induced over k by the absolute value | · | gives rise to totally disconnected
spaces, that are therefore not suitable for defining analytic notions, such as that of a function locally
expandable in power series.

However, in the late 1950’s, J. Tate managed to develop the basics of such a theory (see [Tat71]),
and christened the resulting spaces under the name rigid analytic spaces. To bypass the difficulty
mentioned above, those spaces are not defined as usual topological spaces, but as spaces endowed with
a so-called Grothendieck topology: some open subsets and some coverings are declared admissible
and are the only ones that may be used to define local notions. For instance, one may define an
analytic function by prescribing its restrictions to the members of an admissible covering. We refer
to [Pel20, §5.1] in this volume for a short introduction to rigid analytic spaces.

Towards the end of the 1980’s, V. Berkovich provided another definition of non-Archimedean
analytic spaces. One of the advantages of his approach is that the resulting spaces are true topological
spaces, endowed with a topology that makes them especially nice: they are Hausdorff, locally compact,
and locally path-connected. This is the theory that we will use in these notes.

In the case of curves, one can combine topology, algebra, and combinatorics to get a very
satisfactory description of such spaces. If k is algebraically closed, for instance, one can show that a
smooth compact Berkovich curve X can always be decomposed into a finite graph and an infinite
number of open discs. If the genus of X is positive, there exists a smallest graph satisfying this
property. It is classically called the skeleton of X, an invariant that encodes a surprising number of
properties of X. As an example, if the Betti number of the skeleton of X is equal to the genus of X
and is at least 2, then the curve X can be described analytically as a quotient Γ\O, where O is an
open dense subset of the projective analytic line P1,an

k and Γ a suitable subgroup of PGL2(k). This
phenomenon is known as Schottky uniformization, and it is the consequence of a celebrated theorem
of D. Mumford, which is the main result of [Mum72a].

Obviously, D. Mumford’s proof did not make use of Berkovich spaces, as they were not yet
introduced at that time, but rather of formal geometry and the theory of Bruhat-Tits trees. A few
years later, L. Gerritzen and M. van der Put recasted the theory purely in the language of rigid
analytic geometry (using in a systematic way the notion of reduction of a rigid analytic curve).
We refer the reader to the reference manuscript [GvdP80] for a detailed account of the theory and
related topics, enriched with examples and applications.

In this text, we develop the whole theory of Schottky groups and Mumford curves from scratch, in
a purely analytic manner, relying in a crucial way on the nice topological properties of Berkovich
spaces, and the tools that they enable us to use: the theory of proper actions of groups on topological
spaces, of fundamental groups, etc. We are convinced that those features, and Berkovich’s point of
view in general, will help improve our understanding of Schottky uniformization.

These notes are structured as follows. In Part I, we introduce the Berkovich affine line over a
non-Archimedean valued field k and study its properties. Contrary to several introductory texts, we
do not assume that k is algebraically closed. This part is completely introductory, includes many
details, and could be read by an undergraduate student with a minimal knowledge of abstract algebra
and valuation theory. We develop the theory of the Berkovich affine line A1,an

k over k starting from
scratch: the definition (Section I.1), classification of points with several examples (Section I.2), basic
topological properties, such as local compactness or a description of bases of neighborhoods of points
(Section I.3), and the definition of analytic functions (Section I.4). We then move to more subtle
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aspects of the theory such as extensions of scalars, including a proof that the Berkovich affine line
over k is the quotient of the Berkovich affine line over k̂a (the completion of an algebraic closure of k)
by the absolute Galois group of k (Section I.5) and connectedness properties, culminating with the
tree structure of A1,an

k (Section I.6). We finally investigate even finer aspects of A1,an
k by considering

virtual discs and annuli, and their retractions onto points and intervals respectively (Section I.7),
defining canonical lengths of intervals inside A1,an

k (Section I.8), and ending with results on variations
of rational functions, which are the very first steps of potential theory (Section I.9).

In Part II, we investigate the theory of uniformization of curves under the viewpoint of Berkovich
geometry. Compared to Part I, we have allowed ourselves to be sometimes more sketchy, but this
should not cause any trouble to anyone familiar enough with the theory of Berkovich curves. We
begin again by reviewing standard material. In Section II.1, we define the Berkovich projective
line P1,an

k over k, consider its group of k-linear automorphisms PGL2(k) and introduce the Koebe
coordinates for the loxodromic transformations. In Section II.2, we give an introduction to the
theory of Berkovich analytic curves, starting with those that locally look like the affine line. For
the more general curves, we review the theory without proofs, but provide some references. We
conclude this section by an original purely analytic definition of Mumford curves. In Section II.3, we
propose two definitions of Schottky groups, first using the usual description of their fundamental
domains and second, via their group theoretical properties, using their action of P1,an

k . We show
that they coincide by relying on the nice topological properties of Berkovich spaces. In Section II.4,
we prove that every Mumford curve may be uniformized by a dense open subset of P1,an

k with a
group of deck transformations that is a Schottky group. Once again, our proof is purely analytic,
relying ultimately on arguments from potential theory. To the best of our knowledge, this is the first
complete proof of this result. We conclude the section by investigating automorphisms of Mumford
curves and giving explicit examples.

We put a great effort in providing a self-contained presentation of the results above and including
details that are often omitted in the literature. However, both the theories of Berkovich curves and
Schottky uniformization have a great amount of ramifications and interactions with other branches
of mathematics. For the interested readers, we provide an appendix with a series of references that
will hopefully help them to navigate through this jungle of wonderful mathematical objects.

The idea of writing down these notes came to the first author when he was taking part to the
VIASM School on Number Theory in June 2018 in Hanoi. Just as the school was, the material
presented here is primarily aimed at graduate students, although we also cover some of the most
advanced developments in the field. Moreover, we have included questions that we believe could be
interesting topics for young researchers (see Remarks II.3.20 and II.4.7). The appendix provides
additional material leading to active subjects of research and open problems.

The different chapters in this volume are united by the use of analytic techniques in the study
of arithmetic geometry. While they treat different topics, we encourage the reader to try to
understand how they are related and may shed light on each other. In particular, the lecture notes
of F. Pellarin [Pel20], about Drinfeld modular forms, mention several topics related to ours, although
phrased in the language of rigid analytic spaces, such as Schottky groups (§5) or quotient spaces (§6).
It would be interesting to investigate to what extent the viewpoint of Berkovich geometry presented
here could provide a useful addition to this theory.

Acknowledgments. We warmly thank Marco Maculan for his numerous comments on an earlier
version of this text, and the anonymous referees for their remarks and corrections. The Appendix A.2
greatly benefited from insights and remarks by Jan Vonk and Henri Darmon.

While writing this text, the authors were supported by the ERC Starting Grant “TOSSIBERG”
(grant agreement 637027). The second author was partially funded by a prize of the Fondation des
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Treilles. The Fondation des Treilles created by Anne Gruner-Schlumberger aims to foster the dialogue
between sciences and arts in order to further research and creation. She welcomes researchers and
creators in her domain of Treilles (Var, France).

Notation. Let (`, | · |) be a non-Archimedean valued field.
We set `◦ := {a ∈ ` : |a| 6 1}. It is a subring of ` with maximal ideal `◦◦ := {a ∈ ` : |a| < 1}.

We denote the quotient by ˜̀ and call it the residue field of `.
We set |`×| := {|a|, a ∈ `×}. It is a multiplicative subgroup of R>0 that we call the value group

of `. We denote its divisible closure by |`×|Q. It is naturally endowed with a structure of Q-vector
space.

Once and for all the paper, we fix a non-Archimedean complete valued field (k, | · |), a separable
closure ks of k and the corresponding algebraic closure ka. The absolute value | · | on k extends
uniquely to an absolute value on ka, thanks to the fact that it extends uniquely to any given finite
extension.1 We denote by k̂a the completion of ka: it is algebraically closed and coincides with the
completion k̂s of ks. We still denote by | · | the induced absolute value on k̂a. We have |k̂a×| = |k×|Q.

Part I: The Berkovich affine line
The first object we introduce in our exposition of non-Archimedean analytic geometry is the

Berkovich affine line. This is already an excellent source of knowledge of properties of Berkovich
curves, such as local path-connectedness, local compactness, classification of points, and behaviour
under base change. Other properties, such as global contractibility, do not generalize, but will be
useful later to study curves that “locally look like the affine line” (see Section II.2.1).

Our main reference for this section is V. Berkovich’s foundational book [Ber90]. We have also
borrowed regularly from A. Ducros’s thorough manuscript [Duc].

I.1. The underlying set

Definition I.1.1. The Berkovich affine line A1,an
k is the set of multiplicative seminorms on k[T ]

that induce the given absolute value | · | on k.
In more concrete terms, a point of A1,an

k is a map | · |x : k[T ] → R+ satisfying the following
properties:

(i) ∀P,Q ∈ k[T ], |P +Q|x 6 max(|P |x, |Q|x);
(ii) ∀P,Q ∈ k[T ], |PQ|x = |P |x|Q|x;
(iii) ∀α ∈ k, |α|x = |α|.

With a slight abuse of notation, we set

ker(| · |x) := {P ∈ k[T ] : |P |x = 0}.
It follows from the multiplicativity of | · |x that ker(| · |x) is a prime ideal of k[T ].

In the following, we often denote a point of A1,an
k by x and by | · |x the corresponding seminorm.

This is purely for psychological and notational comfort since x and | · |x are really the same thing.

Example I.1.2. Each element α of k gives rise to a point of A1,an
k via the seminorm

| · |α : P ∈ k[T ] 7−→ |P (α)| ∈ R+.

We denote it by α again. Such a point is called a k-rational point of A1,an
k .

Note that, conversely, the element α may be recovered from | · |α since ker(| · |α) = (T − α). It
follows that the construction provides an injection k ↪→ A1,an

k .
1The reader can find a proof of this classical result in many textbooks, for example in [Cas86, Chapter 7].
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Example I.1.3. The construction of the previous example still makes sense if we start with a point
α ∈ ka and consider the seminorm

| · |α : P ∈ k[T ] 7−→ |P (α)| ∈ R+.

Such a point is called a rigid point of A1,an
k .

However, it is no longer possible to recover α from | · |α in general. Indeed, in this case, we
have ker(| · |a) = (µα), where µα denotes the minimal polynomial of α over k and, if σ is a k-linear
automorphism of ka, then, by uniqueness of the extension of the absolute value, we get | · |σ(α) = | · |α.
One can check that we obtain an injection ka/Aut(ka/k) ↪→ A1,an

k .

Readers familiar with scheme theory will notice that the rigid points of A1,an
k correspond exactly

to the closed points of the schematic affine line A1
k. However the Berkovich affine line contains many

more points, as the following examples show.

Example I.1.4. Each element α of k̂a gives rise to a point of A1,an
k via the seminorm

| · |α : P ∈ k[T ] 7−→ |P (α)| ∈ R+.

This is similar to the construction of rigid points but, if α is transcendental over k, then we have
ker(| · |α) = (0) (i.e. | · |α is an absolute value) and the set of elements α′ in k̂a such that | · |α′ = | · |α
is infinite.

There also are examples of a different nature: points that look like “generic points” of discs.

Lemma I.1.5. Let α ∈ k and r ∈ R>0. The map

| · |α,r : k[T ] −→ R>0∑
i>0 ai(T − α)i 7−→ maxi>0(|ai|ri)

is an absolute value on k[T ].
For α, β ∈ k and r, s ∈ R>0, we have | · |α,r = | · |β,s if, and only if, |α− β| 6 r and r = s.

Proof. It is easy to check that | · |α,r is a norm. It remains to prove that it is multiplicative.
Let P =

∑
i>0 aiT

i and Q =
∑

j>0 bjT
j . We may assume that PQ 6= 0. Let i0 be the minimal

index such that |ai0 |ri0 = |P |r and j0 be the minimal index such that |bj0 |rj0 = |Q|r.
For ` ∈ N, the coefficient of degree ` in PQ is

c` :=
∑
i+j=`

aibj ,

hence we have
|c`|r` 6 max

i+j=`
(|ai|ri |aj |rj) 6 |P |r |Q|r.

For ` = `0 := i0 + j0, we find
c`0 = ai0bj0 +

∑
i+j=`0

(i,j) 6=(i0,j0)

aibj .

For each (i, j) 6= (i0, j0) with i + j = `0, we must have i < i0 or j < j0, hence |ai|ri < |P |r or
|bj |rj < |Q|r and, in any case, |aibj |r`0 < |P |r|Q|r. We now deduce from the equality case in the
non-Archimedean triangle inequality that |c`0 |r`0 = |P |r|Q|r. The result follows.

Let α, β ∈ k and r, s ∈ R>0. Assume that we have | · |α,r = | · |β,s. Applying the equality to T − α
and T − β, we get

r = max(|α− β|, s) and max(|α− β|, r) = s.

We deduce that r = s and |α− β| 6 r, as claimed.
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Conversely, assume that we have r = s and |α− β| 6 r. Arguing by symmetry, it it enough to
prove that, for each P ∈ k[T ], we have |P |β,r 6 |P |α,r. Let P =

∑
i>0 ai(T − α)i ∈ k[T ]. We have

|T − α|β,r = max(|α− β|, r) = r

and, since | · |β,r is multiplicative, |(T − α)i|β,r = ri for each i > 0. Applying the non-Archimedean
triangle inequality, we now get

|P |β,r 6 max
i>0

(|ai|ri) = |P |α,r.

The result follows. �

Example I.1.6. Let α ∈ k and r ∈ R>0. The map

| · |α,r :
∑
i>0

ai(T − α)i 7→ max
i>0

(|ai|ri)

from Lemma I.1.5 is an absolute value, hence gives rise to a point of A1,an
k , which we will denote

by ηα,r. To ease notation, we set | · |r := | · |0,r and ηr := η0,r.
Note that the relation characterizing the equality between ηα,r and ηβ,s is the same that char-

acterizes the equality between the disc with center α and radius r and the disc with center β and
radius s in a non-Archimedean setting. This is no coincidence and one can actually prove that, if k
is not trivially valued, the absolute value | · |α,r is equal to the supremum norm on the closed disc of
radius α and center r in the algebraic closure ka of k.

Remark I.1.7. The definitions of | · |r and | · |α,r from Example I.1.6 still make sense for r = 0. In this
case, the points η0 and ηα,0 that we find are the rational points associated to 0 and α respectively.
It will sometimes be convenient to use this notation.

Note that we could combine the techniques of Examples I.1.3 and I.1.6 to define even more points.

I.2. Classification of points

In this section, we give a classification of the points of the Berkovich affine line A1,an
k . Let us first

introduce a definition.

Definition I.2.1. Let x ∈ A1,an
k . The completed residue field H (x) of x is the completion of the

fraction field of k[T ]/ ker(| · |x) with respect to the absolute value induced by | · |x. It is a complete
valued extension of k.

We will simply denote by | · | the absolute value induced by | · |x on H (x).

The construction provides a canonical morphism of k-algebras χx : k[T ] → H (x). We think
of it as an evaluation morphism (into a field that varies with the point). For P ∈ k[T ], we set
P (x) := χx(P ). It then follows from the definition that we have |P (x)| = |P |x.
Example I.2.2. Let x ∈ A1,an

k . If x is a k-rational point, associated to some element α ∈ k, we have
H (x) = k and the morphism χx is nothing but the usual evaluation morphism P ∈ k[T ] 7→ P (α) ∈ k.

If x is a rigid point, associated to some element α ∈ ka, we have an isomorphism H (x) ' k(α).
Conversely, if H (x) is a finite extension of k, then we have ker(| · |x) = (P ) for some irreducible
polynomial P , hence the point x is rigid (associated to any root of P ).

Example I.2.3. Let α ∈ k and r ∈ R>0 − |k×|Q. Then H (ηα,r) is isomorphic to the field

kr :=
{
f =

∑
i∈Z

ai(T − α)i : lim
i→±∞

|ai|ri = 0
}

endowed with the absolute value |f | = maxi∈Z(|ai|ri).
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η1

η0

ηr r ∈ |k×|, |r| < 1

ηr′ r′ ∈ |k×|, |r′| > 1

Figure 1. The Berkovich affine line A1,an
k when k is an algebraically closed, complete,

valued field.

In the previous example, there exists a unique i0 ∈ Z for which the quantity |ai|ri is maximal.
The fact that kr is a field follows. This is no longer true for r ∈ |k×|Q and the completed residue
field H (ηα,r) is more difficult to describe (see [Chr83, Theorem 2.1.6] for instance).

Definition I.2.4. A character of k[T ] is a morphism of k-algebras χ : k[T ]→ K, where K is some
complete valued extension of k.

Two characters χ′ : k[T ] → K ′ and χ′′ : k[T ] → K ′′ are said to be equivalent if there exists a
character χ : k[T ] → K and isometric embeddings i′ : K → K ′ and i′′ : K → K ′′ that make the
following diagram commutative:

K ′

k[T ] K

K ′′

χ

χ′

χ′′

i′

i′′

.

We have already explained how a point x ∈ A1,an
k gives rise to a character χx : k[T ] → H (x).

Conversely, to each character χ : k[T ]→ K, where (K, | · |) is a complete valued extension of (k, | · |),
we may associate the multiplicative seminorm

| · |χ : P ∈ k[T ]→ |χ(P )| ∈ R.
Any equivalent character would lead to the same seminorm.

Lemma I.2.5. The map x 7→ χx is a bijection from A1,an
k to the set of equivalences classes of

characters of k[T ]. Its inverse is the map χ 7→ | · |χ. �
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We mention the following related standard fact (see [Ked15, Lemma 2.8 and Remark 2.9] for
instance).

Lemma I.2.6. Any two complete valued extensions of k may be isometrically embedded in a common
one. �

Even if we do not have a explicit description of the completed residue fields associated to the
points of A1,an

k , we can use them to introduce some invariants.

Notation I.2.7. For each valued extension (`, | · |) of (k, | · |), we set

s(`) := tr.deg.(˜̀/k̃)

and
t(`) := dimQ(|`×|Q/|k×|Q).

For x ∈ A1,an
k , we set

s(x) := s(H (x)) and t(x) := t(H (x)).

This invariants are related by the Abhyankar inequality (see [Bou06, VI, §10.3, Cor 1]).

Theorem I.2.8. Let ` be a valued extension of k. Then, we have

s(`) + t(`) 6 tr.deg.(`/k).

Moreover, if `/k is a finitely generated extension for which equality holds, then |`×|/|k×| is a finitely
generated abelian group and ˜̀/k̃ is a finitely generated field extension.

For each x ∈ A1,an
k , the fraction field of k[T ]/ ker(| · |x) has degree of transcendence 0 or 1 over k.

Since its invariants s and t coincide with that of H (x), it follows from Abhyankar’s inequality that
we have

s(x) + t(x) 6 1.

We can now state the classification of the points of the Berkovich affine line.

Definition I.2.9. Let x ∈ A1,an
k .

The point x is said to be of type 1 if it comes from a point in k̂a in the sense of Example I.1.4. In
this case, we have s(x) = t(x) = 0.

The point x is said to be of type 2 if we have s(x) = 1 and t(x) = 0.
The point x is said to be of type 3 if we have s(x) = 0 and t(x) = 1.
The point x is said to be of type 4 otherwise. In this case, we have s(x) = t(x) = 0.

Example I.2.10. Let α ∈ k and r ∈ R>0.
Assume that r ∈ |k×|Q. There exist n,m ∈ N>1 and γ ∈ k with rn = |c|m. Consider such an

equality with n minimal. Denote by t the image of (T −α)n/cm in H̃ (x). It is transcendental over k̃
and we have k̃(t) = H̃ (x). We deduce that ηα,r has type 2.

Assume that r /∈ |k×|Q. Then, we have H̃ (ηα,r) = k̃, so ηα,r has type 3.

The classification can be made more explicit when k is algebraically closed. Note that, in this
case, we have |k×|Q = |k×|.

Lemma I.2.11. Assume that k is algebraically closed. Then x has type 2 (resp. 3) if, and only if,
there exist α ∈ k and r ∈ |k×|Q (resp. r /∈ |k×|Q) such that x = ηα,r.
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Proof. Assume that x is of type 2. Since s(x) = 1, there exists P ∈ k[T ] such that |P (x)| = 1 and
P̃ is transcendental over k̃. Since k is algebraically closed, we have |k×| = |k×|Q = |H(x)×|Q, hence
we may write P as a product of linear polynomials, all of which have absolute value 1. One of these
linear polynomials has an image in H̃ (x) that is transcendental over k̃. Write it as c(T − α), with
c ∈ k× and α ∈ k. We then have x = ηα,|c|−1 .

Assume that x is of type 3. Since t(x) = 1, there exists P ∈ k[T ] such that r := |P (x)| /∈ |k×|Q.
As before, we may assume that P = T − α with α ∈ k. We then have x = ηα,r.

The converse implications are dealt with in Example I.2.10. �

Proposition I.2.12. Assume that k is algebraically closed. Let x ∈ A1,an
k . There exist a set I, a

family (αi)i∈I of k and a family (ri)i∈I of R>0 such that, for each i, j ∈ I, we have

max(|αi − αj |, ri) 6 rj or max(|αi − αj |, rj) 6 ri
and, for each P ∈ k[T ],

|P |x = inf
i∈I

(|P |αi,ri).

Proof. Our set I will be the underlying set of k. For each a ∈ k, we set αa := a and ra := |T − a|x.
Let a, b ∈ k. We have

|a− b| = |a− b|x = |a− T + T − b|x 6 max(|a− T |x, |T − b|x),

so the first condition of the statement is satisfied. It implies that we have

∀P ∈ k[T ], |P |a,ra 6 |P |b,rb or ∀P ∈ k[T ], |P |b,rb 6 |P |a,ra .
It follows that the map v : P ∈ k[T ] 7→ infa∈k(|P |a,ra) is multiplicative, hence a multiplicative
seminorm.

Since k is algebraically closed, every polynomial factors as a product of monomials. As a
consequence, to prove that v and | · |x coincide, it is enough to prove that they coincide on monomials,
because of multiplicativity.

Let α ∈ k. We have |T − α|α,rα = rα = |T − α|x, hence v(T − α) 6 |T − α|x. On the other hand,
for each a ∈ k, we have

|T − α|x = |T − a+ a− α|x 6 max(|T − a|x, |a− α|x) = max(ra, |a− α|) = |T − α|a,ra ,
hence |T − α|x 6 v(T − α).

�

Remark I.2.13. One should think of the families (αi)i∈I and (ri)i∈I in the statement of Proposi-
tion I.2.12 as a single family of discs in k (with center αi and radius ri). Then, the condition of the
statement translates into the fact that, for each pair of discs of the family, one is contained in the
other.

Moreover, it is not difficult to check that, if the intersection of this family of discs contains a
point α of k, then we have | · |x = | · |α,r, where r = infi∈I(ri) > 0.

On the other hand, if the family of discs has empty intersection, we find a new point, necessarily
of type 4. Note that we must have infi∈I(ri) > 0 is this case. Otherwise, the completeness of k
would ensure that the intersection of the discs contains an element of k.

Definition I.2.14. Assume that k is algebraically closed. For each x ∈ A1,an
k , we define the radius

of the point x to be
r(x) := inf

c∈k
(|T − c|x).

It can be thought of as the distance from the point to k.
9



Example I.2.15. Assume that k is algebraically closed. Let x ∈ A1,an
k .

If x has type 1, then r(x) = 0.
If x has type 2 or 3, then, by Lemma I.2.11, it is of the form x = ηα,r and we have r(x) = r.
If x has type 4, then, with the notation of Proposition I.2.12, we have r(x) = infi∈I(ri). Indeed,

for each i ∈ I, we have |T − αi|x 6 |T − αi|αi,ri = ri. It follows that r(x) 6 infi∈I(ri). On the
other hand, let c ∈ k. For i big enough, c is not contained in the disc of center αi and radius ri,
that is to say |αi − c| > ri, from which it follows that |T − c|αi,ri = |αi − c|. We deduce that
|T − c|x = infi∈I(|αi − c|) > infi∈I(ri).

η1

η0
Type 1

ηr r ∈ |k×|
Type 2

ηs s /∈ |k×|

Type 3 Type 4

Figure 2. The points ηα,r with r ∈ |k×| are of type 2, the points ηα,s with s /∈ |k×|
are of type 3, and the points ηα,0 are of type 1. If k is not spherically complete,
points of type 4 will occur.

Remark I.2.16. The radius of a point of type different from 1 is not intrinsically attached to the
point in the sense that it depends on the chosen coordinate T on A1,an

k . However, by studying
the automorphisms of A1,an

k , one can prove that any change of coordinate will have the effect of
multiplying all the radii by the same constant (in |k×|), see Proposition I.4.12 and Remark I.4.13.
In particular, the quotient of the radii of two points is well-defined.

Definition I.2.17. The field k is said spherically complete if every family of discs that is totally
ordered by inclusion has a non-empty intersection.

The field k is said maximally complete if it has no non-trivial immediate extensions, i.e. extensions
with the same value group and residue field.

We refer to the paper [Poo93] by B. Poonen for more on those topics and in particular the
construction of spherical completions, i.e. minimal spherically complete extensions. We only quote
the following important result.

Theorem I.2.18. A valued field is spherically complete if, and only if, it is maximally complete. �

Remark I.2.19. Assume that k is algebraically closed. Then, the completed residue field of a point of
type 4 is an immediate extension of k. Using Remark I.2.13, we can deduce a proof of Theorem I.2.18
in this case.
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To make things more concrete, we would now like to give a rather explicit example of a point of
type 4.

Example I.2.20. Let r ∈ (0, 1) and consider the field of Laurent series C((t)) endowed with the
absolute value defined by |f | = rvt(f). Recall that the t-adic valuation vt(f) of f is the infimum of
the indices of the non-zero terms of f in its Taylor expansion f =

∑
n∈Z ant

n. (Note that, for f = 0,
we have vt(0) = +∞, hence |f | = 0.)

The algebraic closure of C((t)) is the field of Puiseux series:

C((t))a =
⋃

m∈N>1

C((t1/m)).

In particular, the exponents of t in the expansion of any given element of C((t))a are rational numbers
with bounded denominators.

We choose our field k to be the completion of C((t))a. Its elements may still be written as power
series with rational exponents. This time, the exponents may have unbounded denominators but
they need to tend to +∞.

Consider a power series of the form
∑

n∈N t
qn where (qn)n∈N is a strictly increasing bounded

sequence of rational numbers. (For instance, qn = 1− 2−n would do.) The associated point of A1,an
k

is then a point of type 4. In this case, one can explicitly describe an associated family of discs by
taking, for each m ∈ N, the disc with center αm :=

∑m
n=0 t

qn and radius rm := rqm+1 .
One can go even further in this case and describe a spherical completion of k. It is the field

of Hahn series C((tQ)) consisting of the power series f =
∑

q∈Q aqt
q, where the aq’s are rational

numbers and the support {q ∈ Q | aq 6= 0} of f is well-ordered: each non-empty subset of it has a
smallest element.

I.3. Topology

We endow the set A1,an
k with the coarsest topology such that, for each P ∈ k[T ], the map

x ∈ A1,an
k 7−→ |P (x)| ∈ R

is continuous. In more concrete terms, a basis of the topology is given by the sets

{x ∈ A1,an
k : r < |P (x)| < s},

for P ∈ k[T ] and r, s ∈ R.

Remark I.3.1. By Example I.1.2, we can see k as a subset of A1,an
k . The topology on k induced by

that on A1,an
k then coincides with that induced by the absolute value | · |.

Lemma I.3.2. The Berkovich affine line A1,an
k is Hausdorff.

Proof. Let x 6= y ∈ A1,an
k . Then, there exists P ∈ k[T ] such that |P (x)| 6= |P (y)|. We may assume

that |P (x)| < |P (y)|. Let r ∈ (|P (x)|, |P (y)|). Set
U := {z ∈ A1,an

k : |P (z)| < r} and V := {z ∈ A1,an
k : |P (z)| > r}.

The sets U and V are disjoint open subsets of A1,an
k containing respectively x and y. The result

follows. �

Definition I.3.3. For α ∈ k and r ∈ R>0, the open disc of center α and radius r is

D−(α, r) = {x ∈ A1,an
k : |(T − α)(x)| < r}.

For α ∈ k and r ∈ R>0, the closed disc of center α and radius r is

D+(α, r) = {x ∈ A1,an
k : |(T − α)(x)| 6 r}.
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For α ∈ k and r < s ∈ R>0, the open annulus of center α and radii r and s is

A−(α, r, s) = {x ∈ A1,an
k : r < |(T − α)(x)| < s}.

For α ∈ k and r 6 s ∈ R>0, the closed annulus of center α and radii r and s is

A+(α, r, s) = {x ∈ A1,an
k : r 6 |(T − α)(x)| 6 s}.

For α ∈ k and r ∈ R>0, the flat closed annulus of center α and radius r is

A+(α, r, r) = {x ∈ A1,an
k : |(T − α)(x)| = r}.

α

ηα,r′

ηα,r ^

α

ηα,r′

Figure 3. On the left, the closed discD+(α, r). On the right, the open discD−(α, r),
which is a maximal open sub-disc of D+(α, r), but not the only one.

In the result that follows, we study the topology of discs and annuli as subsets of A1,an
k .

Lemma I.3.4. Let α ∈ k and r ∈ R>0. The closed disc D+(α, r) is compact and has a unique
boundary point: ηα,r. The open disc D−(α, r) is open and its closure is D−(α, r) ∪ {ηα,r}.

Let α ∈ k and r < s ∈ R>0. The closed annulus A+(α, r, s) is compact and has two boundary
points: ηα,r and ηα,s. The open annulus A−(α, r, s) is open and its closure is A−(α, r, s)∪{ηα,r, ηα,s}.

Let α ∈ k and r ∈ R>0. The flat closed annulus A+(α, r, r) is compact and has a unique boundary
point: ηα,r.

Proof. Let x ∈ D+(α, r). We have |T − α|x 6 r, hence it follows from the non-Archimedean triangle
inequality that we have | · |x 6 | · |α,r, as seminorms on k[T ].

Consider the product
∏
P∈k[T ][0, |P |r] endowed with the product topology and its closed subset F

consisting of the elements (xP )P∈k[T ] satisfying the conditions{
∀P,Q ∈ k[T ], λP+Q 6 max(λP , λQ);

∀P,Q ∈ k[T ], λPQ = λP λQ.

It follows from the previous argument that the map

p : D+(α, r) −→ ∏
P∈k[T ][0, |P |r]

x 7−→ (|P |x)P∈k[T ]

12



induces a bijection between D+(α, r) and F . (The only non-trivial point is to check that the
seminorm on k[T ] associated to an element of F induces the given absolute value | · | on k.) Moreover,
it follows from the very definition of the topology that p is a homeomorphism onto its image. Since
F is closed in

∏
P∈k[T ][0, |P |r], and the latter is compact by Tychonoff’s theorem, F is compact,

hence D+(α, r) is compact too.

Let x ∈ D+(α, r)−{ηα,r}. Then, there exists P ∈ k[T ] such that |P |x 6= |P |α,r, hence |P |x < |P |α,r.
In other words, the point x belong to the open subset {y ∈ A1,an

k : |P |y < |P |α,r} of A1,an
k , which is

contained in D+(α, r). It follows that x belongs to the interior of D+(α, r).
Let U be an open subset of A1,an

k containing ηα,r. By definition of the topology, there exist
P1, . . . , Pn ∈ k[T ] and u1, v1, . . . , un, vn ∈ R such that

ηα,r ∈ {y ∈ A1,an
k : ui < |Pi|y < vi} ⊆ U.

Using the explicit definition of the norms | · |α,s, one shows that, for each s ∈ R>0 that is close enough
to r, we have ηα,s ∈ U . We deduce that ηα,r belongs to the boundary of D+(α, r) (because we can
choose s > r) and to the closure of D−(α, r) (because we can choose s < r).

This finishes the proof that the boundary of D+(α, r) is equal to {ηα,r}.
By definition of the topology, the disc D−(α, r) is open. Since D+(α, r) is compact, it contains

the closure of D−(α, r). We have already proved that its closure contains ηα,r.
Let x ∈ D+(α, r) − (D−(α, r) ∪ {ηα,r}). We have |T − α|x = r and there exists P ∈ k[T ] such

that |P |x < |P |α,r. Let us choose such a polynomial P with minimal degree.
Arguing by contradiction, assume that |P (α)| < |P |α,r. Write P = P (α) + (T − α)Q, with

Q ∈ k[T ]. We then have
|P |α,r = max(|P (α)|, r|Q|α,r) = r|Q|α,r.

If |P (α)| 6= r|Q|x, we have

r|Q|x 6 max(|P (α)|, r|Q|x) = |P |x < |P |α,r = r|Q|α,r.
If |P (α)| = r|Q|x, the same inequality holds. In any case, we have |Q|x < |Q|α,r, which contradicts
the minimality of the degree of P .

We have just proved that |P (α)| = |P |α,r. It follows that, for each y ∈ D−(α, r), we have
|P |y = |P |α,r, hence the open set {y ∈ A1,an

k : |P |y < |P |α,r} contains x and is disjoint from
D−(α, r), so x does not belong to the boundary of D−(α, r).

We have finally proven that the closure of D−(α, r) is D−(α, r) ∪ {ηα,r}.
The results for the annuli are proven similarly. �

Since A1,an
k may be exhausted by closed discs, we deduce the following result.

Corollary I.3.5. The Berkovich affine line A1,an
k is countable at infinity and locally compact. �

It is possible to give a characterization of the fields k for which the space A1,an
k is metrizable.

Corollary I.3.6. The following assertions are equivalent:
(i) the Berkovich affine line A1,an

k is metrizable;
(ii) the field k contains a countable dense subset.

Proof. (i) =⇒ (ii) Assume that A1,an
k is metrizable. We fix a metric on A1,an

k and will consider
balls with respect to it. Let (εn)n∈N be a sequence of positive real numbers converging to 0.

Let r ∈ R>0. By Lemma I.3.4, the closed disc D+(0, r) is compact. As a consequence, for each
n ∈ N, it is covered by finitely many metric balls of radius εn. For each such ball that contains a
point of k, pick a point of k in it. The collection of those points is a finite subset kr,n of k. The set
kr :=

⋃
n∈N kr,n is a countable subset of k that is dense in k ∩D+(0, r).
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It follows that the set k′ :=
⋃
m∈N>1

km is a countable dense subset of k.

(ii) =⇒ (i) Assume that the field k contains a countable dense subset k′. Then, the family of
sets

{x ∈ A1,an
k : r < |P (x)| < s}

with P ∈ k′[T ] and r, s ∈ Q is a countable basis of the topology. The result now follows from
Corollary I.3.5 and Urysohn’s metrization theorem. �

ηα,s

ηα,r

^

_

Figure 4. On the left, the closed annulus A+(α, r, s). On the right, the open annulus
A−(α, r, s), which is the unique maximal open sub-annulus of A+(α, r, s).

By removing the boundary point of a closed disc, one may obtain either one or infinitely many
discs, depending on the radius. We will deal with this question assuming that k is algebraically
closed and consider first the case where the radius does not belong to the value group of k.

Lemma I.3.7. Assume that k is algebraically closed. For each α ∈ k and r ∈ R>0 − |k×|, we have

D+(α, r) = {ηα,r} tD−(α, r).

Proof. Let x ∈ D+(α, r)−D−(α, r). We then have |T − α|x = r.
Let P (T ) = adT

d + · · · + a0 ∈ k[T ]. Since k is algebraically closed, |k×| is divisible and since
r /∈ |k×|, all the terms |ai|ri are distinct. It follows that

|P |x = max
16i6d

(|ai|ri) = |P |α,r.

�

We now handle the case of the disc D+(0, 1). When k is algebraically closed, any disc of the form
D(α, r) with r ∈ |k×| may be turned into the latter by a suitable linear change of variable.

Notation I.3.8. For each u ∈ k̃, we set D−(u, 1) := D−(α, 1), where α is a lift of u in k◦.
Since any two lifts α1 and α2 satisfy |α1 − α2| < 1, the definition does not depend on the choice

of α.
14



Lemma I.3.9. Assume that k is algebraically closed. We have

D+(0, 1) = {η0,1} t
⊔
u∈k̃

D−(u, 1).

Proof. Let u1 ∈ k̃ and let α1 ∈ k◦ such that α̃1 = u1. We have |T −α1|0,1 = max(1, |α1|) = 1, hence
η0,1 /∈ D−(α1, 1).

Let u2 6= u1 ∈ k̃ and let α2 ∈ k◦ such that α̃2 = u2. For each x ∈ D−(u2, 1), we have

|T − α1|x = |(T − α2) + (α2 − α1)|x = 1,

since |T − α2|x < 1 and |α2 − α1| < 1. It follows that x /∈ D−(u1, 1).

To finish, it remains to prove that D+(0, 1)− {η0,1} is covered by the discs D−(u, 1) with u ∈ k̃.
Let x ∈ D+(0, 1) − {η0,1}. There exists P ∈ k[T ] such that |P |x 6= |P |0,1, hence |P |x < |P |0,1.
Since k is algebraically closed, we may find such a P that is a monomial: P = T − α for some α ∈ k.
If |α| > 1, then we have |T − α|x = |α| = |T − α|0,1, which contradicts the assumption. We deduce
that |α| 6 1, hence |T − α|x < |T − α|0,1 = 1 and x ∈ D−(α̃, 1). �

We now want to describe bases of neighborhoods of the points of A1,an
k , at least in the algebraically

closed case. To do this, contrary to the usual complex setting, discs are not enough. We will also
need annuli and even more complicated subsets.

Definition I.3.10. An open (resp. closed) Swiss cheese2 over k is a non-empty subset of A1,an
k that

may be written as the complement of finitely many closed (resp. open) discs over k in an open (resp.
a closed) disc over k.

Proposition I.3.11. Assume that k is algebraically closed. Let x ∈ A1,an
k .

If x has type 1 or 4, it admits a basis of neighborhoods made of discs.
If x has type 2, it admits a basis of neighborhoods made of Swiss cheeses.
If x has type 3, it admits a basis of neighborhoods made of annuli.

Proof. By definition of the topology, every neighborhood of x contains a finite intersection of sets of
the form {u < |P | < v} with P ∈ k[T ] and u, v ∈ R. Since the sets in the statement are stable under
finite intersections, it is enough to prove that each set of the form {u < |P | < v} that contains x
contains a neighborhood of x as described in the statement.

Let P ∈ k[T ] and u, v ∈ R such that |P (x)| ∈ (u, v). Write P = c
∏m
j=1(T − γj) with c ∈ k× and

γ1, . . . , γm ∈ k.
Assume that x has type 1. Since k is algebraically closed, it is a rational point, hence associated to

some α ∈ k. One checks that {u < |P | < v} then contains a disc of the form D−(α, r) for r ∈ R>0.
Assume that x has type 3. By Lemma I.2.11, there exist α ∈ k and r ∈ R>0 such that x = ηα,r.

One checks that {u < |P | < v} then contains an annulus of the form A−(α, r1, r2) for some
r1, r2 ∈ R>0 with r ∈ (r1, r2).

Assume that x has type 4. By Proposition I.2.12 and Remark I.2.13, it is associated to a family of
closed discs (D+(αi, ri))i∈I whose intersection contains no rational point. Because of this condition,
there exists i ∈ I such that D+(αi, ri) contains none of the γj ’s. Then, for each j ∈ {1, . . . ,m}, we
have

|αi − γj | > ri,

hence, for each y ∈ D+(αi, ri), we have

|T (y)− γj | = |T (y)− αi + αi − γj | = |αi − γj |.
We deduce that, for each y ∈ D+(αi, ri), we have |P (y)| = |P (x)| and the result follows.

2This is called a “standard set” in [Ber90, Section 4.2]
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Assume that x has type 2. By Lemma I.2.11, there exist α ∈ k and r ∈ R>0 such that x = ηα,r.
We have

|P (x)| = |c|
m∏
j=1

max(r, |α− γj |) < v,

hence there exists ρ > r such that |c|∏m
j=1 max(ρ, |α− γj |) < v. Then, for each y ∈ D−(α, ρ), we

have |P (y)| < v.
There exists (ρ1, . . . , ρm) ∈ ∏m

j=1(0, |T (x) − γj |) such that |c|∏m
j=1 ρi > u. Then, for each

y ∈ A1,an
k −⋃m

j=1D
+(γj , ρj), we have |P (y)| > u.

It follows that D−(α, ρ)−⋃m
j=1D

+(γj , ρj) is a neighborhood of x contained in {u < |P | < v}. �
Remark I.3.12. If k is not algebraically closed, bases of neighborhoods of points may be more
complicated. Let us give an example. Let p be a prime number that is congruent to 3 modulo 4, so
that −1 is not a square in Qp. Consider the point x of A1,an

k associated to a square root of −1 in Cp.
Equivalently, the point x is the unique point of A1,an

k satisfying |T 2 + 1|x = 0.
The subset U of A1,an

k defined by the inequality |T 2 + 1| < 1 is an open neighborhood of x. It
does not contains 0, so the function T is invertible on it and we may write

−1 = T 2 − (T 2 + 1) = T 2

(
1− T 2 + 1

T 2

)
.

At each point y of U , we have |T 2 + 1|y < 1, hence |T 2|y = 1 and we deduce that −1 has a square
root on U . In particular, U contains no Qp-rational points and no discs.

Note that the topology of A1,an
k is quite different from the topology of k. We have already seen

that A1,an
k is always locally compact, whereas k is if, and only if, |k×| is discrete and k̃ is finite.

In another direction, k is always totally disconnected, but A1,an
k contains paths, as the next result

shows.

Lemma I.3.13. Let α ∈ k. The map

r ∈ R>0 7−→ ηα,r ∈ A1,an
k

is a homeomorphism onto its image Iα.

Proof. It is clear that the map is injective and open, so to prove the result, it is enough to prove
that it is continuous. By definition, it is enough to prove that, for each P ∈ k[T ], the map
r ∈ R>0 7→ |P |α,r ∈ R>0 is continuous. The result then follows from the explicit description of | · |α,r
(see Example I.1.6). �

Remark I.3.14. One may use the paths from the previous lemma to connect the points of k. Let
α, β ∈ k and consider the paths Iα and Iβ . Example I.1.6 tells us that they are not disjoint but meet
at the point ηα,|α−β| = ηβ,|α−β| (and actually coincide from this point on). The existence of a path
from α to β inside A1,an

k follows.
We will use this construction in Section I.6 to show that A1,an

k is path-connected.

I.4. Analytic functions

So far, we have described the Berkovich affine line A1,an
k as a topological space. It may actually

be endowed with a richer structure, since we may define analytic functions over it.

Definition I.4.1. Let U be an open subset of A1,an
k . An analytic function on U is a map

F : U →
⊔
x∈U

H (x)
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such that, for each x ∈ U , the following conditions hold:
(i) F (x) ∈H (x);
(ii) there exist a neighborhood V of x and sequences (Pn)n∈N and (Qn)n∈N of elements of k[T ]

such that the Qn’s do not vanish on V and

lim
n→+∞

sup
y∈V

(∣∣∣F (y)− Pn(y)

Qn(y)

∣∣∣) = 0.

Remark I.4.2. The last condition can be reformulated by saying that F is locally a uniform limit of
rational functions without poles, which then makes the definition similar to the usual complex one
(where analytic functions are locally uniform limits of polynomials).

The Berkovich affine line A1,an
k together with its sheaf of analytic functions O now has the structure

of a locally ringed space. It satisfies properties that are similar to those of the usual complex analytic
line C. We state a few of them here without proof.

The set of global analytic functions on some simple open subsets of A1,an
k may be described

explicitly.

Proposition I.4.3. Let r ∈ R>0. Then O(D−(0, r)) is the set of elements∑
i∈N

ai T
i ∈ kJT K

with radius of convergence greater than or equal to r:

∀s ∈ (0, r), lim
i→+∞

|ai| si = 0.

�

Corollary I.4.4. The local ring O0 at the point 0 of A1,an
k consists of the power series in kJT K with

positive radius of convergence.

Proof. It follows from Proposition I.4.3 and the fact that the family of discs D−(0, r), with r > 0,
forms a basis of neighborhoods of 0 in A1,an

k (see the proof of Proposition I.3.11). �

Corollary I.4.5. Assume that k is algebraically closed. Let x ∈ A1,an
k be a point of type 4, associated

to a family of closed discs (D+(αi, ri))i∈I as in Proposition I.2.12. The local ring Ox at the point x
of A1,an

k consists of the union over i ∈ I of the sets of power series in kJT − αiK with radius of
convergence bigger than or equal to ri.

Proof. It follows from Proposition I.4.3 and the fact that the family of discs (D+(αi, ri))i∈I , with
i ∈ I, forms a basis of neighborhoods of x in A1,an

k (see the proof of Proposition I.3.11). �

Proposition I.4.6. Let r, s ∈ R>0 with r < s. Then O(A−(0, r, s)) is the set of elements∑
i∈Z

ai T
i ∈ kJT, T−1K

satisfying the following condition:

∀t ∈ (r, s), lim
i→±∞

|ai| ti = 0.

�

Corollary I.4.7. Let t ∈ R>0−|k×|. The local ring Oηt at the point ηt of A1,an
k is the set of elements∑

i∈Z
ai T

i ∈ kJT, T−1K
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satisfying the following condition:

∃t1, t2 ∈ R>0 with t1 < t < t2 such that lim
i→−∞

|ai| ti1 = lim
i→+∞

|ai| ti2 = 0.

�

Proof. It follows from Proposition I.4.6 and the fact that the family of annuli A−(0, t1, t2), with
t1 < t < t2, forms a basis of neighborhoods of ηt in A1,an

k (see the proof of Proposition I.3.11). �

Remark I.4.8. The local rings at points of type 2 of A1,an
k do not admit descriptions as simple as

that of the other points, due to the fact that they have more complicated bases of neighborhoods
(see Proposition I.3.11). Over an algebraically closed field k, one may still obtain a rather concrete
statement as follows. Let C be a set of lifts of the elements of k̃ in k◦. Then, the local ring Oη1 at
the point η1 of A1,an

k consists in the functions that may be written as a sum of power series with
coefficients in k of the form ∑

i∈N
ai T

i +
∑
c∈C0

∑
i∈N>1

ac,i (T − c)−i,

where C0 is a finite subset of C and the series all have radius of convergence strictly bigger than 1.
We refer to [FvdP04, Proposition 2.2.6] for details.

Let us now state some properties of the local rings, i.e. germs of analytic functions at one point.
They are easily seen to hold for O0 using its explicit description as a ring of power series (see
Proposition I.4.3).

Proposition I.4.9. Let x ∈ A1,an
k . The ring Ox is a local ring with maximal ideal

mx = {F ∈ Ox : F (x) = 0}.
The quotient Ox/mx is naturally a dense subfield of H (x).

If x is a rigid point (see Example I.1.3), then Ox is a discrete valuation ring that is excellent and
henselian. Otherwise, Ox is a field. �

Remark I.4.10. The existence of the square of −1 in Remark I.3.12 may be reproved using Henselianity.
With the notation of that remark, we have Ox/mx = H (x) = k[T ]/(T 2 + 1), hence the residue field
Ox/mx contains a root of T 2 + 1. Since we are in characteristic 0, this root is simple, hence, by
Henselianity, it lifts to a root of T 2 + 1 in Ox.

The next step is to define a notion of morphism between open subsets of A1,an
k . As one should

expect, such a morphism ϕ : U → V underlies a morphism of locally ringed spaces (hence a morphism
of sheaves ϕ] : OV → ϕ∗OU ), but the precise definition is more involved since we want the seminorms
associated to the points of U and V to be compatible. For instance, for each x ∈ U , we want the
map Oϕ(x)/mϕ(x) → Ox/mx induced by ϕ] to be an isometry with respect to | · |ϕ(x) and | · |x (so
that it induces an isometry H (ϕ(x))→H (x)). We will not dwell on those questions, which would
lead us too far for this survey. Anyway, in the rest of the text, we will actually make only a very
limited use of morphisms.

Let us mention that, as in the classical theories, global sections of the structure sheaf correspond
to morphisms to the affine line.

Lemma I.4.11. Let U be an open subset of A1,an
k . Then, the map

Hom(U,A1,an
k ) −→ O(U)

ϕ 7−→ ϕ](T )

is a bijection. �
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For later use, we record here the description of isomorphisms of discs and annuli. Once the rings of
global sections are known (see Proposition I.4.3 and I.4.6), those results are easily proven using the
theory of Newton polygons (or simple considerations on the behaviour of functions as in Section I.9).
We refer to [Duc, 3.6.11 and 3.6.12] for complete proofs.

Proposition I.4.12. Let r1, r2 ∈ R>0. Let ϕ : D−(0, r1)→ D−(0, r2) be an isomorphism such that
ϕ(0) = 0. Write

ϕ](T ) =
∑
i∈N>1

aiT
i ∈ kJT K

using Proposition I.4.3. Then, we have

∀s ∈ (0, r1), |a1| s > sup
i>2

(|ai| si).

In particular, we have r2 = |a1| r1 and, for each s ∈ [0, r1), ϕ(ηs) = η|a1|s. �

Remark I.4.13. The previous result still holds if we allow the radii to be infinite, considering the
affine line as the disc of infinite radius.

Proposition I.4.14. Let r1, s1, r2, s2 ∈ R>0 with r1 < s1 and r2 < s2. Let ϕ : A−(0, r1, s1) →
A−(0, r2, s2) be an isomorphism. Write

ϕ](T ) =
∑
i∈Z

aiT
i ∈ kJT, T−1K

using Proposition I.4.6. Then, there exists i0 ∈ {−1, 1} such that we have

∀t ∈ (r1, s1), |ai0 | si0 > sup
i 6=i0

(|ai| si).

In particular, if i0 = 1, we have r2 = |a1| r1, s2 = |a1| s1 and, for each t ∈ (r1, s1), ϕ(ηs) = η|a1|s. If
i0 = −1, we have r2 = |a1|/s1, s2 = |a1|/r1 and, for each t ∈ (r1, s1), ϕ(ηs) = η|a1|/s. �

Remark I.4.15. The previous result still holds if we allow r1 or r2 to be 0 and s1 or s2 to be infinite.

Definition I.4.16. Let A = A−(α, r, s) be an open annulus. We define the modulus of A to be

Mod(A) :=
s

r
∈ (1,+∞).

By Proposition I.4.14, the modulus of an annulus only depends on its isomorphism class and not
on the coordinate chosen to describe it.

I.5. Extension of scalars

Let (K, | · |) be a complete valued extension of (k, | · |). The ring morphism k[T ]→ K[T ] induces a
map

πK/k : A1,an
K −→ A1,an

k

called the projection map. In this section, we study this map.

Proposition I.5.1. Let K be a complete valued extension of k. The projection map πK/k is
continuous, proper and surjective.

Proof. The map πK/k is continuous as a consequence of the definitions. To prove that it is proper,
note that the preimage of a closed disc in A1,an

k is a closed disc in A1,an
K with the same center and

radius, hence a compact set by Lemma I.3.4.
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It remains to prove that πK/k is surjective. Let x ∈ A1,an
k and consider the associated character

χx : k[T ] → H (x). By Lemma I.2.6, there exists a complete valued field L containing both K
and H (x). The character χx over k induces a character over K given by

K[T ]
χx⊗K−−−−→H (x)⊗k K → L.

The associated point of A1,an
K belongs to π−1

K/k(x). �

The following result shows that the fibers of the projection map may be quite big.

Lemma I.5.2. Let K be a complete valued extension of k. Assume that k and K are algebraically
closed and that K is maximally complete. Let x ∈ A1,an

k be a point of type 4. Then π−1
K/k(x) is a

closed disc of radius r(x).

Proof. Fix notation as in Proposition I.2.12. We have r(x) = infi∈I(ri). Since K is maximally
complete, the intersection of all the discs D+(αi, ri) in A1,an

K contains a point γ ∈ K.
Let us prove that π−1

K/k(x) = D+(γ, r(x)) in A1,an
K .

Let c ∈ k. For i big enough, c is not contained in the disc of center αi and radius ri, that is to say
|αi − c| > ri. It follows that, for each y ∈ D+(αi, ri), we have

|T − c|y = |αi − c| = |T − c|αi,ri .
We have D+(γ, r(x)) ⊆ ⋂i∈I D

+(αi, ri). It then follows from the previous argument that, for
each z ∈ D+(γ, r(x)) and each c ∈ k, we have

|T − c|z = inf
i∈I

(|αi − c|) = |T − c|x.

Since k is algebraically closed, every polynomial is a product of monomials and we deduce that
D+(γ, r(x)) ⊆ π−1

K/k(x).

Let y ∈ A1,an
K \D+(γ, r(x)). Then, there exists i ∈ I such that

|T − αi|y > ri = |T − αi|αi,ri > |T − αi|x.
The result follows. �

Remark I.5.3. Fix notation as in Proposition I.2.12. The preceding proof also shows that we have⋂
i∈I D

+(αi, ri) = {x} in A1,an
k .

Remark I.5.4. The preceding lemma shows that the projection map is not open and does not preserve
the types of points in general.

We now deal more specifically with the case of Galois extensions. Let σ ∈ Aut(K/k) and assume
that it preserves the absolute value on K. (This condition is automatic if K/k is algebraic.) For
each x ∈ A1,an

K , the map
P ∈ K[T ] 7−→ |σ(P )|x ∈ R>0

is a multiplicative seminorm. We denote by σ(x) the corresponding point of A1,an
K .

Proposition I.5.5. Let K be a finite Galois extension of k. The map

(σ, x) ∈ Gal(K/k)× A1,an
K 7−→ σ(x) ∈ A1,an

K

is continuous and proper.
The projection map πK/k induces a homeomorphism

A1,an
K /Gal(K/k)

∼−→ A1,an
k .

In particular, πK/k is continuous, proper, open and surjective.
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Proof. To prove the first continuity statement, it is enough to prove that, for each P ∈ K[T ], the
map

(σ, x) ∈ Gal(K/k)× A1,an
K 7−→ |P (σ(x))| = |σ(P )|x ∈ R>0

is continuous.
Let P ∈ K[T ]. We may assume that P 6= 0. For each σ, τ ∈ Gal(K/k) and each x, y ∈ A1,an

K , we
have ∣∣|σ(P )|x − |τ(P )|y

∣∣ 6 ∣∣|σ(P )|x − |σ(P )|y
∣∣+
∣∣|σ(P )|y − |τ(P )|y

∣∣
6
∣∣|σ(P )|x − |σ(P )|y

∣∣+ ‖(σ − τ)(P )‖∞ max(1, |T |y)deg(P ),

where, for each R ∈ K[T ], we denote by ‖R‖∞ the maximum of the absolute values of its coefficients.
The continuity now follows from the continuity of the maps z ∈ A1,an

K 7→ |σ(P )|z and σ ∈ Gal(K/k) 7→
σ(c), for c ∈ K.

Let us now prove properness. Since any compact subset of A1,an
K is contained in a disc of the form

D+(0, r) for some r ∈ R>0, it is enough to prove that the preimage of such a disc is compact. Since
this preimage is equal to Gal(K/k)×D+(0, r), the result follows from the compactness of D+(0, r)
(see Lemma I.3.4).

We now study the map πK/k. It is continuous and proper, by Proposition I.5.1.
Let x ∈ A1,an

k and consider the associated character χx : k[T ]→H (x). It induces a morphism of
K-algebras χK,x : K[T ]→H (x)⊗k K.

Let α ∈ K be a primitive element for K/k. Denote by P its minimal polynomial over k
and by P1, . . . , Pr the irreducible factors of P in H (x)[T ]. For each i ∈ {1, . . . , r}, let Li be
an extension of H (x) generated by a root of Pi. We then have an isomorphism of K-algebras
ϕ : H (x)⊗k K ∼−→∏r

i=1 Li.
For each i ∈ {1, . . . , r}, by composing ϕ ◦ χK,x with the projection on the ith factor, we get a

character χi : K[T ]→ Li. Denote by yi the associated point of A1,an
K . We have πK/k(yi) = x.

Conversely, let y ∈ A1,an
K such that πK/k(y) = x. The field H (y) is an extension of both H (x)

andK, so the universal property of the tensor product yields a natural morphism H (x)⊗kK →H (y).
It follows that there exists i ∈ {1, . . . , r} such that H (y) is an extension of Li, and we then have
y = yi. We have proven that π−1

K/k(x) = {y1, . . . , yr}.
Since P is irreducible in k[T ], the group Gal(K/k) acts transitively on its roots, hence on the Pi’s.

It follows that, for each i, j ∈ {1, . . . , r}, there exists σ ∈ Gal(K/k) such that χi ◦ σ = χj , hence
σ(yi) = yj . We have proven that π−1

K/k(x) is a single orbit under Gal(K/k).

The arguments above show that the projection map πK/k : A1,an
K → A1,an

k factors through a map
π′K/k : A1,an

K /Gal(K/k)→ A1,an
k and that the latter is continuous and bijective. Since πK/k is proper,

π′K/k is proper too, hence a homeomorphism. �

Recall that every element of Gal(ks/k) preserves the absolute value on ks. It particular, it extends
by continuity to an automorphism of k̂s = k̂a. We endow Gal(ks/k) with its usual profinite topology.

Corollary I.5.6. The map

(σ, x) ∈ Gal(ks/k)× A1,an

k̂a
7→ σ(x) ∈ A1,an

k̂a

is continuous and proper.
The projection map π

k̂a/k
induces a homeomorphism

A1,an

k̂a
/Gal(ks/k)

∼−→ A1,an
k .
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In particular, π
k̂a/k

is continuous, proper, open and surjective.

Proof. The first part of the statement is proven as in Proposition I.5.5, using the fact that the group
Gal(ks/k) is compact.

Let x, y ∈ A1,an

k̂a
such that π

k̂a/k
(x) = π

k̂a/k
(y). By Proposition I.5.5, for each finite Galois

extension K of k, there exists σK in Gal(K/k) such that σK(πK/k(x)) = πK/k(y). By compactness,
the family (σK)K admits a subfamily converging to some σ ∈ Gal(ks/k). We then have

∀P ∈ ks[T ], |σ(P )|x = |P |y.

Let Q ∈ k̂a[T ]. We want to prove that we still have |σ(Q)|x = |Q|y. We may assume that Q is
non-zero. Let d be its degree. By density of ks into k̂a, there exists a sequence (Qn)n>0 of elements
of ks[T ] of degree d that converge to Q for the norm ‖·‖∞ that is the supremum norm of the
coefficients. Note that we have

|Q−Qn|y 6 ‖Q−Qn‖∞ max(1, |T |y)d,
so that (|Qn|y)n>0 converges to |Q|y. The same argument shows that (|σ(Qn)|x)n>0 converges
to |σ(Q)|x and the results follows.

We have just proven that the map A1,an

k̂a
/Gal(ks/k)→ A1,an

k induced by π
k̂a/k

is a bijection. The
rest of the statement follows as in the proof of Proposition I.5.5. �

Lemma I.5.7. Let y, z ∈ A1,an

k̂a
such that π

k̂a/k
(y) = π

k̂a/k
(z). Then y and z are of the same type

and have the same radius.

Proof. By Corollary I.5.6, there exists σ ∈ Gal(ks/k) such that z = σ(y). The result follows
easily. �

As a consequence, we may define the type and the radius of a point of the Berkovich affine line
over any complete valued field.

Definition I.5.8. Let x ∈ A1,an
k .

We define the type of the point x to be the type of the point y, for any y ∈ π−1

k̂a/k
(x).

We define the radius of the point x to be the radius of the point y, for any y ∈ π−1

k̂a/k
(x). We

denote it by r(x).

We end this section with a finiteness statement that is often useful.

Lemma I.5.9. Let X be a subset of A1,an

k̂a
that is either a disc, an annulus or a singleton containing

a point of type 2 or 3. Then, the orbit of X under Gal(ks/k) is finite.
In particular, for each x ∈ A1,an

k of type 2 or 3, the fiber π−1

k̂a/k
(x) is finite.

Proof. Let us first assume that X is a closed disc: there exists α ∈ k̂a and r ∈ R>0 such that
X = D+(α, r). Since ka is dense in k̂a, we may assume α ∈ ka. Then orbit of α is then finite, hence
so is the orbit of X. The case of an open disc is dealt with similarly.

Points of type 2 or 3 are boundary points of closed discs by Lemma I.3.4, hence the orbits of such
points are finite too. Since closed and open annuli are determined by their boundary points, which
are of type 2 or 3 (see Lemma I.3.4 again), their orbits are finite too.

Finally, if x ∈ A1,an
k is a point of type 2 (resp. 3), then, by Corollary I.5.6, the fiber π−1

k̂a/k
(x) is an

orbit of a point of type 2 (resp. 3). The last part of the result follows. �
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I.6. Connectedness

In this section, we study the connectedness properties of the Berkovich affine line and its subsets.
Our main source here is [Ber90, Section 4.2] for the connectedness properties (see also [Ber90,
Section 3.2] for higher-dimensional cases) and [Duc, Section 1.9] for properties of quotients of graphs.

Proposition I.6.1. Open and closed discs, annuli and Swiss cheeses are path-connected. The
Berkovich affine line A1,an

k is path-connected and locally path-connected.

Proof. Let us deal first handle the case of a closed disc, say D+(α, r) with α ∈ k and r ∈ R>0. By
Proposition I.5.1, the projection map πK/k is continuous and surjective for any complete valued
extension K of k. As a result, it is enough to prove the result on some extension of k, hence we may
assume that k is algebraically closed and maximally complete.

Let x ∈ D+(α, r). By Lemma I.2.11 and Remark I.2.19, there exist β ∈ k and s ∈ R>0 such that
x = ηβ,s. Since x ∈ D+(α, r), we have

|T − α|β,s = max(|α− β|, s) 6 r,
hence s 6 r and ηα,r = ηβ,r. As a consequence, the map

λ ∈ [0, 1] 7→ ηα,s+(r−s)λ ∈ A1,an
k

defines a continuous path from x to ηα,r in D+(α, r) (see Lemma I.3.13). It follows that the disc
D+(α, r) is path-connected.

The same argument may be used in order to prove that closed annuli and Swiss cheeses are
connected. Indeed, if such a set S is written as the complement of some open discs in D+(α, r), it is
easy to check that, for each x ∈ S, the path joining x to ηα,r that we have just described actually
remains in S.

Since the open figures may be written as increasing unions of the closed ones, the result holds for
them too.

The last statement follows from the fact that A1,an
k may be written as an increasing union of discs

for the global part, and from Proposition I.3.11 and Corollary I.5.6 for the local part. �

The Berkovich affine line actually satisfies a stronger connectedness property: it is uniquely
path-connected. We will now prove this result, starting with the case of an algebraically closed field.

Definition I.6.2. We define a partial ordering 6 on A1,an

k̂a
by setting

x 6 y if ∀P ∈ k̂a[T ], |P |x 6 |P |y.
For each x ∈ A1,an

k̂a
, we set

Ix := {y ∈ A1,an

k̂a
: y > x}.

Remark I.6.3. Let σ ∈ Gal(ks/k). By definition of the action of σ, for every x, y ∈ A1,an

k̂a
, we have

x 6 y if, and only if, σ(x) 6 σ(y). It follows that, for each z ∈ A1,an

k̂a
, we have σ(Iz) = Iσ(z).

The proof of the following lemma is left as an exercise for the reader.

Lemma I.6.4. Let α ∈ k̂a and r ∈ R>0. For each x ∈ A1,an

k̂a
, we have x 6 ηα,r if, and only if,

x ∈ D+(α, r).
In particular, for β ∈ k̂a and s ∈ R>0, we have ηα,r 6 ηβ,s if, and only if, max(|α − β|, r) 6 s.

Moreover, when those conditions hold, we have ηβ,s = ηα,s. �

Corollary I.6.5. The minimal points for the ordering 6 on A1,an

k̂a
are exactly the points of type 1

and 4.
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Proof. It follows from Lemma I.6.4 that points of type 2 and 3 are not minimal and that points of
type 1 are. To prove the result, it remains to show that points of type 4 are minimal too. This
assertion follows from the fact that any such point is the unique point contained in the intersection
of a family of closed discs (see Remark I.5.3) by applying Lemma I.6.4 again. �

Corollary I.6.6. Let α ∈ k̂a and r ∈ R>0. We have

Iηα,r = {ηα,s : s > r}.
Let x ∈ A1,an

k̂a
be a point of type 4 and fix notation as in Proposition I.2.12. Then, for each i, j ∈ I,

we have Iηαi,ri ⊆ Iηαj,rj or Iηαj,rj ⊆ Iηαi,ri and we have

Ix = {x} ∪
⋃
i∈I

Iηαi,ri .

�

The former result shows in particular that our notation is consistent with that of Lemma I.3.13.

Corollary I.6.7. Let x ∈ A1,an

k̂a
. The radius map r : A1,an

k̂a
→ R>0 induces a homeomorphism from Ix

onto [r(x),+∞).
The restriction of the projection map π

k̂a/k
to Ix is injective.

Proof. The fact that the radius map induces is a bijection from Ix onto its image follows from
Corollary I.6.6. One can then prove directly that its inverse is continuous and open by arguing as in
the proof of Lemma I.3.13.

Let us now prove the second part of the statement. Let y, z ∈ Ix such that x < y < z. Then,
there exist α ∈ k̂a and r < s ∈ R>0 such that y = ηα,r and z = ηα,s. Since ks in dense in k̂a, we
may assume that α ∈ ks. Let Pα ∈ k[T ] be the minimal polynomial of α over k. Since there exists
Qα ∈ k̂a[T ] such that Pα = (T − α)Qα, we have

|Pα|y = r |Qα|y < s |Qα|y = |Pα|z.
It follows that π

k̂a/k
(y) 6= π

k̂a/k
(z).

Finally, assume that there exists z ∈ Ix − {x} such that π
k̂a/k

(z) = π
k̂a/k

(x). For each y ∈ Ix
such that x < y < z and each P ∈ k[T ], we have

|P |x 6 |P |y 6 |P |z = |P |x,
hence |P |y = |P |z, which contradicts what we have just proved. �

Corollary I.6.8. Let x, y ∈ A1,an

k̂a
. The set {z ∈ A1,an

k̂a
: z > x and z > y} admits a smallest element.

We will denote it by x ∨ y.
In particular, if x and y are comparable for 6, then Ix∪Iy is homeomorphic to a half-open interval

and, otherwise, Ix ∪ Iy is homeomorphic to a tripod with one end-point removed, i.e. the union of
two closed intervals and one half-open interval glued along a common end-point.

Proof. We have {z ∈ A1,an

k̂a
: z > x and z > y} = Ix ∩ Iy. By Corollary I.6.7, Ix and Iy may be sent

to intervals of the form [∗,+∞) by order-preserving homeomorphisms. We deduce that, in order to
prove the result, it is enough to prove that Ix ∩ Iy is non-empty. Setting R := max(|T |x, |T |y), the
points x and y belong to D+(0, R), hence ηR belongs to Ix,y, by Lemma I.6.4.

Denoting by x ∨ y the smallest element of Ix ∩ Iy, we have Ix ∩ Iy = Ix∨y. In particular, by
Corollary I.6.7, Ix ∩ Iy is homeomorphic to a half-open interval with end-point x ∨ y. Set

[x, x ∨ y] := {z ∈ Ix : x 6 z 6 (x ∨ y)} and [y, x ∨ y] := {z ∈ Iy : y 6 z 6 (x ∨ y)}.
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By Corollary I.6.7 again, [x, x ∨ y] and [y, x ∨ y] are homeomorphic to closed intervals (possibly
singletons if x and y are comparable). Finally, the result follows by writing

Ix ∪ Iy = [x, x ∨ y] ∪ [y, x ∨ y] ∪ Ix∨y.
�

Corollary I.6.9. Let x ∈ A1,an

k̂a
. The set A1,an

k̂a
− Ix is a union of open discs. In particular, Ix is

closed.

Proof. Let y ∈ A1,an

k̂a
− Ix. The point x ∨ y defined in Corollary I.6.8 belongs to Iy and is not equal

to y. It follows that there exists z ∈ Iy − Ix such that y < z. By Corollary I.6.6, y is a point of
type 2 or 3, hence, by Lemma I.6.4, the set D := {u ∈ A1,an

k̂a
: u 6 z} is a closed disc of positive

radius. It is contained in A1,an

k̂a
− Ix. Since z is not the boundary point of D, y indeed belongs to

some open subdisc of D by Lemmas I.3.7 and I.3.9. �

Proposition I.6.10. Let Γ be a subset of A1,an

k̂a
such that, for each x ∈ Γ, Ix ⊆ Γ. Then, A1,an

k̂a
− Γ

is a union of discs and points of type 4.
If, moreover, Γ is closed, then A1,an

k̂a
− Γ is a union of open discs.

Proof. To prove the first statement, it is enough to show that each point of A1,an

k̂a
− Γ that is not of

type 4 is contained in a closed disc. Let x be such a point. Then, by Lemma I.6.4, {y ∈ A1,an

k̂a
: y 6 x}

is a closed disc. By assumption, it is contained in A1,an

k̂a
− Γ, and the result follows.

Let us now assume that Γ is closed. Let x ∈ A1,an

k̂a
− Γ. Since Γ is closed, there exists y ∈ Ix − Γ

such that y > x. We then conclude as in the proof of Corollary I.6.9. �

Corollary I.6.11. For every x, y ∈ A1,an

k̂a
, there exists a unique injective path from x to y.

Proof. Set Ix,y := Ix ∪ Iy. It follows from Corollaries I.6.7 and I.6.8 that it is homeomorphic a
half-open interval or a tripod with one end-point removed. It follows that there exists a unique
injective path from x to y inside Ix,y. In particular, there exists an injective path from x to y
in A1,an

k̂a
.

By Corollary I.6.9 and Proposition I.6.10, A1,an

k̂a
− Ix,y is a union of open discs. By Lemma I.3.4,

every open disc has a unique boundary point. As a consequence, an injective path going from x to y
cannot meet any of these open disc, since otherwise it would contain its boundary point twice. It
follows that such a path is contained in Ix,y. �

We want to deduce the result for A1,an
k by using the projection map π

k̂a/k
: A1,an

k̂a
→ A1,an

k . Recall
that, by Corollary I.5.6, it is a quotient map by the group Gal(ks/k).

Proposition I.6.12. For every x, y ∈ A1,an
k , there exists a unique injective path from x to y.

Proof. To ease notation, we will write π instead of π
k̂a/k

.

Let x, y ∈ A1,an
k . Choose x′ ∈ π−1(x) and y′ ∈ π−1(y). Set J := Ix′ ∪ Iy′ . By Lemma I.6.7, π(Ix′)

and π(Iy′) are half-open intervals and, by Corollary I.6.8, they meet.
Let z ∈ π(Ix′) ∩ π(Iy′). There exists z′ ∈ Ix′ such that π(z′) = z and σ ∈ Gal(ks/k) such that

σ(z′) ∈ Iy′ . By Remark I.6.3, we have σ(Iz′) = Iσ(z′) and we deduce that π(J) is a tripod with one
end-point removed. In particular, there exists a unique injective path from x to y in π(J), and at
least one such path in A1,an

k .
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To conclude, let us prove that any injective path from x to y in A1,an
k is contained in π(J). Set

Γ := π−1(π(J)) =
⋃

σ∈Gal(ks/k)

σ(J).

Since the action of the elements of Gal(ks/k) preserves the norm, for each R ∈ R>0, we have

Γ ∩D+(0, R) = π−1(π(J ∩D+(0, R))),

and it follows that Γ ∩D+(0, R) is compact. We deduce that Γ is closed.
Moreover, we have

Γ =
⋃

z∈π−1(x)∪π−1(y)

Iz,

hence, by Proposition I.6.10, A1,an

k̂a
− Γ is a union of open discs. Using the fact that it is invariant

under the action of Gal(ks/k), we may now conclude as in the proof of Corollary I.6.11. �

Notation I.6.13. For x, y ∈ A1,an
k , we will denote by [x, y] the unique injective path between x

and y. We set (x, y) := [x, y]− {x, y}.

Remark I.6.14. The fact that A1,an
k is uniquely path-connected means that it has the structure of a

real tree. The type of the points may be easily read off this structure. Indeed the end-points are the
points of type 1 and 4 (see Remark I.5.3 for points of type 4). Among the others, type 2 points are
branch-points (with infinitely many edges meeting there, see Lemma I.3.9) while type 3 points are
not (see Lemma I.3.7). For a graphical representation of this fact, see Figure 2.

I.7. Virtual discs and annuli

In this section, we introduce generalizations of discs and annuli that are more suitable when
working over arbitrary fields and study them from the topological point of view. We explain that
they retract onto some simple subsets of the real line, namely singletons and intervals respectively.
Here we borrow from [Ber90, Section 6.1], which also contains a treatment of more general spaces.

I.7.1. Definitions.

Definition I.7.1. A connected subset U of A1,an
k is called a virtual open (resp. closed) disc if

π−1

k̂a/k
(U) is a disjoint union of open (resp. closed) discs. We define similarly virtual open, closed

and flat annuli and virtual open and closed Swiss cheeses.

We now introduce particularly interesting subsets of virtual annuli.

Definition I.7.2. Let A be a virtual open or closed annulus. The skeleton of A is the complement
of all the virtual open discs contained in A. We denote it by ΣA.

Example I.7.3. Consider the open annulus A := A−(γ, ρ1, ρ2), with γ ∈ k and ρ1 < ρ2 ∈ R>0. Its
skeleton is

ΣA = {ηγ,s : ρ1 < s < ρ2}.

Lemma I.7.4. Let A be a virtual open (resp. closed) annulus. Let C be a connected component
of π−1

k̂a/k
(A). Then, C is an open (resp. closed) annulus and π

k̂a/k
induces a homeomorphism

between ΣC and ΣA. In particular, ΣA is an open (resp. closed) interval.
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Figure 5. The skeleton of an open annulus is the open line segment joining its
boundary points

Proof. Let us handle the case of a virtual open annulus, the other one being dealt with similarly.
The connected component C is an open annulus, by the very definition of virtual open annulus. It
also follows from the definitions that we have ΣA = π

k̂a/k
(ΣC).

Denote by GC the subgroup of Gal(ks/k) consisting of those elements that preserve C. By
Corollary I.5.6, π

k̂a/k
induces a homeomorphism C/GC ' A, hence a homeomorphism ΣC/GC ' ΣA.

Write C = A−(γ, ρ1, ρ2), with γ ∈ k̂a and ρ1 < ρ2 ∈ R>0. Its complement in A1,an

k̂a
has two

connected components, namely D+(γ, ρ1) and

D+
∞(γ, ρ2) := {x ∈ A1,an

k̂a
: |(T − γ)(x)| > ρ2}.

For r big enough, we have ηγ,r = ηr, which belongs to D+
∞(γ, ρ2) and is stable under Gal(ks/k). It

follows that D+(γ, ρ1) and D+
∞(γ, ρ2) are stable under GC .

Let σ ∈ GC . We have

σ(D+(γ, ρ1)) = D+(σ(γ), ρ1) = D+(γ, ρ1),

hence |σ(γ)− γ| 6 ρ1. It follows that, for each s ∈ (ρ1, ρ2), we have

σ(ηγ,s) = ησ(γ),s = ηγ,s,

that is to say σ acts as the identity on ΣC . The result follows. �

Remark I.7.5. Virtual discs and annuli are usually defined as arbitrary connected k-analytic curves
(see Section II.2.2) whose base change to k̂a is a disjoint union of discs or annuli, without requiring
an embedding into A1,an

k . Our definition is a priori more restrictive.
With this definition of virtual annulus, an additional difficulty appears. If A is such a virtual

annulus and C is a connected component of π−1

k̂a/k
(A), then there may exist elements of Gal(ks/k)

that preserve C but swap its two ends. In this case, the skeleton ΣA is a half-open interval. (For
an example of such a behaviour, consider a Galois orbit in k̂a consisting of two points, its image x
in A1,an

k and let A be the complement in P1,an
k of a small virtual closed disc containing x.) Some

authors (for instance A. Ducros) explicitly rule out this possibility in the definition of virtual annulus.
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We may also extend the notion of modulus (see Definition I.4.16) from annuli to virtual annuli.
Recall that, by Lemma I.5.9, the set of connected components of the preimage of a virtual open
annulus by π−1

k̂a/k
is finite and that, by Corollary I.5.6, Gal(ks/k) acts transitively on it.

Definition I.7.6. Let A be a virtual open annulus. Denote by C the set of connected components
of π−1

k̂a/k
(A) and let C0 be one of them. We define the modulus of A to be

Mod(A) := Mod(C0)1/]C ∈ (1,+∞).

It is independent of the choice of C0.

Remark I.7.7. Beware that other normalizations exist in the literature for the modulus of a virtual
open annulus. For instance, A. Ducros sets Mod(A) := Mod(C0) (see [Duc, 3.6.15.11]).

We refer the reader to [Duc, Section 3.6] for a thorough treatment of classical and virtual discs
and annuli.

I.7.2. The case of an algebraically closed and maximally complete base field. In this
section, we assume that k is algebraically closed and maximally complete. This will allow us to
prove our results through direct computations.

Recall that, by Lemma I.2.11 and Remark I.2.19, each point of A1,an
k (or a disc or an annulus) is

of the form ηα,r, for α ∈ k and r ∈ R>0.

Let γ ∈ k and ρ ∈ R>0. We consider the closed disc D+(γ, ρ).

Lemma I.7.8. The map

[0, 1]×D+(γ, ρ) 3 (t, ηα,r) 7−→ ηα,max(r,tρ) ∈ D+(γ, ρ)

is well-defined and continuous. It induces a deformation retraction of D+(γ, ρ) and D−(γ, ρ)∪{ηγ,ρ}
onto their unique boundary point ηγ,ρ. �

Let γ ∈ k and ρ1 < ρ2 ∈ R>0. We consider the open annulus A := A−(γ, ρ1, ρ2). Each rational
point of A is contained in an open disc. Indeed, let α ∈ k ∩A (which implies that ρ1 < |γ−α| < ρ2).
Then, the open disc D−(α, |γ − α|) is the maximal open disc containing α that lies in A. This open
disc is relatively compact in A and its unique boundary point is ηα,|γ−α| = ηγ,|γ−α|.

We have

A− ΣA =
⋃

α∈k∩A
D−(α, |γ − α|).

In particular, each connected component of A− ΣA is an open disc. For each such open disc D, we
denote by ηD its boundary point in A.

Lemma I.7.9. The map

[0, 1]×A 3 (t, ηα,r) with r 6 |γ − α| 7−→ ηα,max(r,t|γ−α|) ∈ A

is well-defined and continuous. It induces a deformation retraction of A onto ΣA.
Its restriction to each connected component D of A−ΣA coincides with the map from Lemma I.7.8

and induces a deformation retraction of D onto ηD.
For each η ∈ ΣA, the set of points that are sent to η by the retraction map is the union of η and

all the connected component D of A− ΣA such that ηD = η. It is a flat closed annulus. �
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I.7.3. The general case. We now remove the assumption on k. Let K be an extension of k that is
algebraically closed and maximally complete. If X is a virtual disc or a virtual annulus, then each
connected component of π−1

K/k(X) is a true disc or annulus over K and the results of the previous
section apply. By continuity and surjectivity of πK/k, we deduce retraction results in this setting too.

Proposition I.7.10. Let D be a virtual open disc in A1,an
k . Then, D has a unique boundary point ηD

in A1,an
k and there exists a canonical deformation retraction τD : D ∪ {ηD} → {ηD}. �

Proposition I.7.11. Let A be a virtual open annulus. Each connected component of A− ΣA is a
virtual open disc.

There exists a canonical deformation retraction τA : A → ΣA. Its restriction to any connected
component D of A− ΣA induces the map τD from Proposition I.7.10.

Moreover, for each open interval (resp. closed interval, resp. singleton) I in ΣA, the set τ−1
A (I) is

a virtual open annulus (resp. a virtual closed annulus, resp. a virtual flat closed annulus).
�

Lemma I.7.12. Let A be a virtual open annulus. Let F be a finite subset of ΣA and denote by I
the set of connected components of ΣA − F . The elements of I are open intervals and we have

Mod(A) =
∏
I∈I

Mod(τ−1
A (I)).

�

I.8. Lengths of intervals

In this section, we show that intervals inside A1,an
k may be endowed with a canonical (exponential)

length. To start with, we define the useful notion of branch at a point.

Notation I.8.1. For α ∈ k̂a and r ∈ R>0, we set

D−∞(α, r) := {x ∈ A1,an
k : |(T − α)(x)| > r}.

Lemma I.8.2. Let x ∈ A1,an

k̂a
.

If x is of type 1 or 4, then A1,an

k̂a
− {x} is connected.

If x = ηα,r, with α ∈ k̂a and r ∈ R>0 − |k×|, then the connected components of A1,an

k̂a
− {x} are

D−(α, r) and D−∞(α, r).
If x = ηα,r, with α ∈ k̂a and r ∈ |k×|, then the connected components of A1,an

k̂a
−{x} are D−∞(α, r)

and the discs of the form D−(β, r) with |β − α| 6 r.

Proof. Assume that x is of type 1 or 4. Let y, y′ ∈ A1,an

k̂a
− {x}. By Corollary I.6.8, Iy ∪ Iy′ is a

connected subset of A1,an

k̂a
containing y and y′. By Corollary I.6.5, it does not contain x. It follows

that A1,an

k̂a
− {x} is connected.

Assume that x = ηα,r, with α ∈ k̂a and r ∈ R>0 − |k×|. By Proposition I.6.1, D−(α, r) is
connected. Since D−∞(α, r) may be written as an increasing union of open annuli, we deduce from
Proposition I.6.1) that it is connected too. The result now follows from Lemma I.3.7.

Assume that x is of type 2. Up to a change of variables, we may assume that x = η0,1. As before,
we deduce from Proposition I.6.1 that D−∞(0, 1) and the discs of the form D−(β, 1) with |β| 6 1 are
connected. The result now follows from Lemma I.3.9. �

Remark I.8.3. We have D−(β, r) = D−(β′, r) if, and only if, |β − β′| < r.
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Definition I.8.4. Let x ∈ A1,an
k . Let y, z ∈ A1,an

k − {x}. We say that the intervals (x, y] and (x, z]
are x-equivalent if (x, y] ∩ (x, z] 6= ∅.

An x-equivalence class of intervals (x, y], with x 6= y, is called a branch at x. We denote by Bx
the set of branches at x.

Remark I.8.5. If (x, y] and (x, z] are equivalent, if follows from the unique path-connectedness
of A1,an

k (see Proposition I.6.12) that there exists t ∈ A1,an
k − {x} such that (x, t] = (x, y] ∩ (x, z].

Lemma I.8.6. Let x ∈ A1,an
k . Denote by Cx the set of connected component of A1,an

k − {x}.
For each y ∈ A1,an

k − {x}, denote by Cx(y) the connected component of A1,an
k − {x} containing y.

The map
C : Bx −→ Cx

(x, y] 7−→ Cx(y)

is well-defined and bijective.

Proof. Let y ∈ A1,an
k − {x}. For each t ∈ (x, y], the interval [t, y] is connected and does not

contain x, hence Cx(t) = Cx(y). It then follows from Remark I.8.5 that C((x, y)) only depends on
the equivalence class of (x, y). In other words, C is well-defined.

Let y, z ∈ A1,an
k − {x} such that (x, y] is not equivalent to (x, z]. It follows that [y, x]∪ [x, z] is an

injective path from y to z. Since, by Proposition I.6.12, A1,an
k is uniquely path-connected, the unique

injective path [y, z] from y to z contains x. It follows that y and z belong to different connected
components of A1,an

k − {x}. This proves the injectivity of C.
Finally, the surjectivity of C is obvious. �

Lemma I.8.7. Let x ∈ A1,an
k be a point of type 2 or 3. Let y ∈ A1,an

k − {x}. Then, there exists z in
(x, y) such that, for each t ∈ (x, z), the interval (x, t) is the skeleton of a virtual open annulus.

Proof. Let x′ ∈ π−1

k̂a/k
(x). Let y′ ∈ π−1

k̂a/k
(y). The image of the path [x′, y′] by π

k̂a/k
is a path

between x and y. It follows that, up to changing x′ and y′, we may assume that π
k̂a/k

restricts to a
bijection between [x′, y′] and [x, y].

By Lemma I.8.6 and the explicit description of the connected components of A1,an

k̂a
− {x′} from

Lemma I.8.2, there exists z′ in (x, y′) such that, for each t′ ∈ (x, z′), the interval (x, t′) is the skeleton
of a open annulus.

By Lemma I.5.9, the orbit of any open annulus under the action of Gal(ks/k) is finite. It follows
that, up to choosing z′ closer to x, we may assume that, for each t′ ∈ (x, z′), the interval (x, t′) is
the skeleton of a open annulus, all of whose conjugates either coincide with it or are disjoint from it.
The image of such an open annulus by π

k̂a/k
is a virtual open annulus, and the result follows. �

As a consequence, we obtain the following result, which is the key-point to define lengths of
intervals.

Lemma I.8.8. Let x, y ∈ A1,an
k be points of type 2 or 3. Then, there exists a finite subset F of (x, y)

such that each connected component of (x, y)− F is the skeleton of a virtual open annulus. �

Definition I.8.9. Let x, y ∈ A1,an
k be points of type 2 or 3. Let F be a finite subset of (x, y) such

that each connected component of (x, y) − F is the skeleton of a virtual open annulus. Let I be
the set of connected components of (x, y)− F and, for each J ∈ J , denote by AJ the virtual open
annulus with skeleton J .

We define the (exponential) length of (x, y) to be

`((x, y)) :=
∏
J∈J

Mod(AJ) ∈ [1,+∞).
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It is independent of the choices, by Lemma I.7.12.

Definition I.8.10. Let I be an interval inside A1,an
k that is not a singleton. We define the (expo-

nential) length of I to be

`(I) := sup({`((x, y)) : x, y ∈ I of type 2 or 3}) ∈ [1,+∞].

Example I.8.11. Let α ∈ k and r ∈ R>0 with r 6 |α|. Then, we have

`([η1, ηα,r]) = `((η1, ηα,r)) =

{
1
r if |α| 6 1;
|α|
r if |α| > 1.

In particular, we always have `([η1, ηα,r]) > 1/r.

Lemma I.8.12. Let I be an interval in A1,an
k . We have `(I) = +∞ if, and only if, the closure of I

contains a point of type 1.
Let I1, I2 be intervals in A1,an

k such that I = I1 ∪ I2 and I1 ∩ I2 is either empty or a singleton.
Then, we have

`(I) = `(I1) `(I2).

�

I.9. Variation of rational functions

In this section, for every rational function F ∈ k(T ), we study the variation of |F | on A1,an
k . We

will explain that it is controlled by a finite subtree of A1,an
k and investigate metric properties.

Notation I.9.1. Let x ∈ A1,an
k . We set

Ix := π
k̂a/k

(Ix′),

for x′ ∈ π−1

k̂a/k
(x).

By Remark I.6.3, this does not depend on the choice of x′.

As in the case of an algebraically closed base field, Ix may be thought of as a path from x to ∞.

Proposition I.9.2. Let F ∈ k(T ) − {0}. Let Z be the set rigid points of A1,an
k that are zeros or

poles of F . Set
IZ :=

⋃
z∈Z

Iz.

Then |F | is locally constant on A1,an
k − IZ .

Proof. One immediately reduces to the case where the base field is k̂a. Since k̂a is algebraically
closed, F may be written as a quotient of products of linear polynomials. It follows that is is enough
to prove the results for linear polynomials.

Let α ∈ k̂a and let us prove the result for F = T − α. Let C be a connected component of
A1,an
k − Iα. Let η in the closure of C. It belongs to Iα, hence is of the form ηα,r for r ∈ R>0.
Recall that discs are connected, by Proposition I.6.1. By Lemma I.3.7, the case r /∈ |k×| leads to

a contradiction. It follows that r ∈ |k×|. Performing an appropriate change of variables and using
Lemma I.3.9, we deduce that there exists β ∈ k̂a with |α− β| = r such that C = D−(β, r). For each
x ∈ C, we have

|(T − α)(x)| = |(T − β)(x) + (β − α)| = r,

because of the non-Archimedean triangle inequality. The results follows. �
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Our next step is to describe the behaviour of |F | on IZ using metric data. Recall that, for each
x ∈ A1,an

k , we denote by Bx the set of branches at x (see Definition I.8.4).

Definition I.9.3. Let x ∈ A1,an
k and b ∈ Bx. Let E be a set. A map f : b → E is the data of a

non-empty subset I of representatives of b and a family of maps (fI : I → E)I∈I such that, for each
I, J ∈ I, fI and fJ coincide on I ∩ J .

Let I be a representative of b. We say that f is defined on I if I belongs to I. In this case, we
usually write f : I → E instead of fI : I → E.

Note that a map f : I → E defined on some representative I of b naturally gives rise to a map
f : b→ E.

Definition I.9.4. Let x ∈ A1,an
k and b ∈ Bx. Let f : b→ R>0. Let N ∈ Z.

We say that f is monomial along b of exponent N if there exists a representative (x, y] of b such
that f is defined on (x, y] and

∀z ∈ (x, y],∀t ∈ (x, z], f(z) = f(t) `([t, z])N .

We then set
µb(f) := N.

We say that f is constant along b if it is monomial along b of exponent 0.

Remark I.9.5. Written additively, the last condition becomes

∀z ∈ (x, y],∀t ∈ (x, z], log(f(z)) = log(f(t)) +N log(`([t, z])).

This explains why, in the literature, such maps are often referred to as log-linear and N denoted
by ∂b log(f).

Let x ∈ A1,an
k and x′ ∈ π−1

k̂a/k
(x). Let b′ ∈ Bx′ . It follows from Lemmas I.8.7 and I.7.4 that,

for each small enough representative (x′, y′] of b′, π
k̂a/k

induces a homeomorphism from (x′, y′] to
(x, π

k̂a/k
(y′)]. This property allows to define the image of the branch b′.

Definition I.9.6. Let x ∈ A1,an
k and x′ ∈ π−1

k̂a/k
(x). Let b′ ∈ Bx′ . The image of the branch b′

by π
k̂a/k

is the branch

π
k̂a/k

(b′) := (x, π
k̂a/k

(y′)] ∈ Bx,

for a small enough representative (x′, y′] of b′.

Lemma I.9.7. Let x ∈ A1,an
k and x′ ∈ π−1

k̂a/k
(x). Let b ∈ Bx. For each b ∈ Bx, there exists b′ ∈ Bx′

such that π
k̂a/k

(b′) = b. The set of such b′’s is finite and Gal(ks/k) acts transitively on it.

Proof. The existence of b′ is proved as in the beginning of the proof of Lemma I.8.7. The rest of the
statement follows from Lemmas I.8.7 and I.5.9 and Corollary I.5.6. �

The following result is a direct consequence of the definitions.

Lemma I.9.8. Let x ∈ A1,an
k and b ∈ Bx. Let f : b → R>0. Assume that there exists N ∈ Z such

that, for each b′ ∈ π−1

k̂a/k
, f ◦π

k̂a/k
is monomial along b′ of exponent N . Then, f is monomial along b

of exponent N · ]π−1

k̂a/k
(b).
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Definition I.9.9. Let F ∈ k̂a(T )− {0}. Let α ∈ k̂a. The order of F at α is the unique integer v
such there exists P ∈ k̂a[T ] with P (α) 6= 0 satisfying

F (T ) = (T − α)v P (T ).

We denote it by ordα(P ).

Theorem I.9.10. Let F ∈ k̂a(T )− {0}. Let x ∈ A1,an

k̂a
and b ∈ Bx. Then the map |F | is monomial

along b.
If x is of type 1, then µb(|F |) = ordx(F ).
If x is of type 2 or 3 and C(b) is bounded, then

µb(|F ]) = −
∑

z∈k̂a∩C(b)

ordz(F ).

If x is of type 2 or 3 and C(b) is unbounded, then

µb(|F ]) = deg(F )−
∑

z∈k̂a∩C(b)

ordz(F ).

If x is of type 4, then µb(|F |) = 0.

Proof. Let us first remark that if the result holds for G and H in k̂a(T )− {0}, then it also holds
for GH and G/H. As a result, since k̂a is algebraically closed, it is enough to prove the result for a
linear polynomial, so we may assume that F = T − a, with a ∈ k.
• Assume that x is of type 1.
There exists α ∈ k such that x = α. By Lemmas I.8.2 and I.8.6, there is a unique branch at x. It

is represented by
(α, ηα,s] = {ηα,t : t ∈ (0, s]},

for any s ∈ R>0.
If α = a, then for each t ∈ R>0, we have |(T − a)(ηa,t)| = t, hence |T − a| is monomial along b of

exponent 1. Since we have orda(T − a) = 1, the result holds in this case.
If α 6= a, then for each t ∈ (0, |a− α|), we have |(T − a)(ηα,t)| = |aα|, hence |T − a| is monomial

along b of exponent 0. Since we have ordα(T − a) = 0, the result holds in this case too.

• Assume that x is of type 2 or 3 and that C(b) is bounded.
There exist α ∈ k and r ∈ R>0 such that x = ηα,r. By Lemma I.8.2, there exists β ∈ k with

|β − α| 6 r such that C(b) = D−(β, r). Since ηα,r = ηβ,r, we may assume that α = β. The branch b
is then represented by

(ηα,r, ηα,s] = {ηα,t : t ∈ [s, r)},
for any s ∈ (0, r].

If a ∈ C(b), then we have |a− α| < r, hence, for each t ∈ [|a− α|, r), we have |(T − a)(ηα,t)| = t,
hence |T − a| is monomial along b of exponent −1. It follows that the result holds in this case.

If a /∈ C(b), then we have |a− α| = r, hence, for each t ∈ [0, r), we have |(T − a)(ηα,t)| = |a− α|,
hence |T − a| is monomial along b of exponent 0. It follows that the result holds in this case too.

• Assume that x is of type 2 or 3 and that C(b) is unbounded.
There exist α ∈ k and r ∈ R>0 such that x = ηα,r. By Lemma I.8.2, the branch b is then

represented by
(ηα,r, ηα,s] = {ηα,t : t ∈ (r, s]},

for any s ∈ (r,+∞).
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If a ∈ C(b), then we have |a−α| > r, hence, for each t ∈ (r, |a−α|), we have |(T−a)(ηα,t)| = |a−α|,
hence |T − a| is monomial along b of exponent 0. We have

deg(T − a)−
∑

z∈k̂a∩C(b)

ordz(T − a) = deg(T − a)− orda(T − a) = 1− 1 = 0,

hence the result holds in this case.
If a /∈ C(b), then we have |a − α| 6 r, hence, for each t ∈ (r,+∞), we have |(T − a)(ηα,t)| = t,

hence |T − a| is monomial along b of exponent 1. We have

deg(T − a)−
∑

z∈k̂a∩C(b)

ordz(T − a) = deg(T − a) = 1,

hence the result holds in this case too.

• Assume that x is of type 4.
By Proposition I.3.11, x admits a basis of neighborhood made of discs. It follows that there exist

α ∈ k and r ∈ R>0 such that x ∈ D−(α, r) and a /∈ D−(α, r). For each y ∈ D−(α, r), we have
|(T − a)(y)| = |(T − α)(y) + (α− a)| = |a− α|, hence |T − a| is constant in the neighborhood of x.
The result follows. �

Remark I.9.11. The term deg(R) that appears in the formula when C(b) is unbounded may be
identified with the opposite of the order of R at ∞. If we had worked on P1,an

k̂a
instead of A1,an

k̂a
, it

would not have been necessary to discuss this case separately.

Corollary I.9.12. Let F ∈ k(T )− {0}. Let x ∈ A1,an
k be a point of type 2 or 3. Then, there exists

a finite subset Bx,F of Bx such that, for each b ∈ Bx \Bx,F , |F | is constant along b and we have∑
b∈Bx

µb(|F |) =
∑

b∈Bx,F

µb(|F |) = 0.

Proof. Using Lemma I.9.8, one reduces to the case where the base field is k̂a. The result then follows
from Theorem I.9.10, since we have ordz(F ) = 0 for almost all z ∈ k̂a and∑

z∈k̂a

ordz(F ) = deg(F ).

�

Remark I.9.13. The statement of Corollary I.9.12 corresponds to a harmonicity property. This is
more visible written in the additive form (see Remark I.9.5):∑

b∈Bx

∂b log(|F |) = 0.

A full-fledged potential theory actually exists over Berkovich analytic curves. We refer to A. Thuillier’s
thesis [Thu05] for the details (see also [BR10] for the more explicit case of the Berkovich line over
an algebraically closed field).

Since analytic functions are, by definition, locally uniform limits of rational functions, the results
on variations of functions extend readily.

Theorem I.9.14. Let x ∈ A1,an
k be a point of type 2 or 3 and let F ∈ Ox − {0}. Then, for b ∈ Bx,

|F | is monomial along b with integer slope. Moreover, there exists a finite subset Bx,F of Bx such
that, for each b ∈ Bx \Bx,F , |F | is contant along b and we have∑

b∈Bx

µb(|F |) = 0.
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�

Corollary I.9.15. Let x ∈ A1,an
k be a point of type 2 or 3 and let F ∈ Ox − {0}. If |F | has a local

maximum at x, then it is locally constant at x. �

Corollary I.9.16. Let U be a connected open subset of A1,an
k and let F ∈ O(U). If |F | is not

constant on U , then there exists y ∈ ∂U and b ∈ By such that

lim
z−→
b
y
|F (z)| = sup

t∈U
(|F (t)|),

where the limit is taken on points z converging to y along b, and |F | has a negative exponent
along b. �

We conclude with a result of a different nature, showing that, if ϕ is a finite morphism of curves,
the relationship between the length of an interval at the source and the length of its image is
controlled by the degree of the morphism. We state a simplified version of the result and refer to
[Duc, Proposition 3.6.40] for a more general statement.

Theorem I.9.17. Let A1 and A2 be two virtual annuli over k with skeleta Σ1 and Σ2. Let ϕ : A1 →
A2 be a finite morphism such that ϕ(Σ1) = Σ2. Then, for each x, y ∈ Σ1, we have

`(ϕ([x, y])) = `([x, y])deg(ϕ).

�

Example I.9.18. Let n ∈ N>1 and consider the morphism ϕ : A1,an
k → A1,an

k given by T 7→ Tn. For
each r ∈ R>0, we have ϕ(ηr) = ηrn . In particular, for r < s ∈ R>0, we have

`(ϕ([ηr, ηs])) = `([ηrn , ηsn ]) =
sn

rn
= `([ηr, ηs])

n.

Part II: Berkovich curves and Schottky uniformization

II.1. The Berkovich projective line and Möbius transformations

II.1.1. Affine Berkovich spaces. We generalize the constructions of Part I, replacing k[T ] by an
arbitrary k-algebra of finite type. Our reference here is [Ber90, Section 1.5].

Definition II.1.1. Let A be k-algebra of finite type. The Berkovich spectrum Specan(A) of A is
the set of multiplicative seminorms on A that induce the given absolute value | · | on k.

As in Definition I.2.1, we can associate a completed residue field H (x) to each point x of Specan(A).
As in Section I.3, we endow Specan(A) with the coarsest topology that makes continuous the maps
of the form

x ∈ Specan(A) 7−→ |f(x)| ∈ R
for f ∈ A. Properties similar to that of the Berkovich affine line still hold in this setting: the space
Specan(A) is countable at infinity, locally compact and locally path-connected.

We could also define a sheaf of function on Specan(A) as in Definition I.4.13 with properties similar
to that of the usual complex analytic spaces.

3Note however that the ring of global sections is always reduced, so that we only get the right notion when A is
reduced. The proper construction involves defining first the space An,ank := Specan(k[T1, . . . , Tn]), then open subsets
of it, and then closed analytic subsets of the latter, as we usually proceed for analytifications in the complex setting.
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Lemma II.1.2. Each morphism of k-algebras ϕ : A→ B induces a continuous map of Berkovich
spectra

Specan(ϕ) : Specan(B) −→ Specan(A)
| · |x 7−→ |ϕ( ·)|x .

Let us do the example of a localisation morphism.

Notation II.1.3. Let A be a k-algebra of finite type and let f ∈ A. We set

D(f) := {x ∈ Specan(A) | f(x) 6= 0}.
It is an open subset of Specan(A).

Lemma II.1.4. Let A be a k-algebra of finite type and let f ∈ A. The map Specan(A[1/f ]) →
Specan(A) induced by the localisation morphism A → A[1/f ] induces a homeomorphism onto its
image D(f). �

II.1.2. The Berkovich projective line. In this section, we explain how to construct the Berkovich
projective line over k. It can be done, as usual, by gluing upside-down two copies of the affine line
A1,an
k along A1,an

k − {0}. We refer to [BR10, Section 2.2] for a definition in one step reminiscent of
the “Proj” construction from algebraic geometry.

To carry out the construction of the Berkovich projective line more precisely, let us introduce
some notation. We consider, as before, the Berkovich affine line X := A1,an

k with coordinate T ,
i.e. Specan(k[T ]). By Lemma II.1.4, its subset U := A1,an

k − {0} = D(T ) may be identified with
Specan(k[T, 1/T ]).

We also consider another Berkovich affine line X ′ with coordinate T ′ and identify its subset
U ′ := X ′ − {0} with Specan(k[T ′, 1/T ′]).

By Lemma II.1.2, the isomorphism k[T ′, 1/T ′]
∼−→ k[T, 1/T ] sending T ′ to 1/T induces an isomor-

phism ι : U
∼−→ U ′.

Definition II.1.5. The Berkovich projective line P1,an
k is the space obtained by gluing the Berkovich

affine lines X and X ′ along their open subsets U and U ′ via the isomorphim ι.
We denote by ∞ the image in P1,an

k of the point 0 in X ′.

The basic topological properties of P1,an
k follow from that of A1,an

k .

Proposition II.1.6. We have P1,an
k = A1,an

k ∪ {∞}.
The space P1,an

k is Hausdorff, compact, uniquely path-connected and locally path-connected. �

For x, y ∈ P1,an
k , we denote by [x, y] the unique injectif path between x and y.

II.1.3. Möbius transformations. Let us recall that, in the complex setting, the group PGL2(C)

acts on P1(C) via Möbius transformations. More precisely, to an invertible matrix A =

(
a b
c d

)
, one

associates the automorphism

γA : z ∈ P1(C) 7−→ az + b

cz + d
∈ P1(C)

with the usual convention that, if c 6= 0, then γA(∞) = a/c and γA(−d/c) =∞, and, if c = 0, then
γA(∞) =∞.

We would like to define an action of PGL2(k) on P1,an
k similar to the complex one. Let A :=(

a b
c d

)
∈ GL2(k).
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First note that we can use the same formula as above to associate to A an automorphism γA of
the set of rational points P1,an

k (k).
It is actually possible to deal with all the points this way. Indeed, let x ∈ P1,an

k − P1,an
k (k). In

Section I.2, we have associated to x a character χx : k[T ]→H (x). Since x is not a rational point,
χx(T ) does not belong to k, hence the quotient (aχx(T ) + b)/(cχx(T ) + d) makes sense. We can
then define γA(x) as the element of A1,an

k associated to the character

P (T ) ∈ k[T ] 7→ P
(aχx(T ) + b

cχx(T ) + d

)
∈H (x).

This construction can also be made in a more algebraic way. By Lemmas II.1.2 and II.1.4, the
morphism of k-algebras

P (T ) ∈ k[T ] 7→ P
(aT + b

cT + d

)
∈ k
[
T,

1

cT + d

]
induces a map γA,1 : A1,an

k − {−d
c} → A1,an

k ⊆ P1,an
k (with the convention that −d/c =∞ if d = 0).

Similarly, the morphism of k-algebras

Q(U) ∈ k[T ′] 7→ Q
(c+ dT ′

a+ bT ′

)
∈ k
[
T ′,

1

a+ bT ′

]
induces a map γA,2 : P1,an

k − {0,− b
a} → P1,an

k (with the convention that −b/a =∞ if a = 0).
A simple computation shows that the maps γA,1 and γA,2 are compatible with the isomorphism ι

from Section II.1.2. Note that we always have −d
c 6= − b

a . If ad 6= 0, it follows that we have(
A1,an
k − {− c

d}
)
∪
(
P1,an
k − {0,− b

a}
)

= P1,an
k , so the two maps glue to give a global map

γA : P1,an
k → P1,an

k .

We let the reader handle the remaining cases by using appropriate changes of variables.

Notation II.1.7. For a, b, c, d ∈ k with ad− bc 6= 0, we denote by
[
a b
c d

]
the image in PGL2(k) of

the matrix
(
a b
c d

)
.

From now on, we will identify each element A of PGL2(k) with the associated automorphism γA
of P1,an

k .

Lemma II.1.8. The image of a closed (resp. open) disc of P1,an
k by a Möbius transformation is a

closed (resp. open) disc.

Proof. Let A ∈ GL2(k). We may extend the scalars, hence assume that k is algebraically closed. In
this case, A is similar to an upper triangular matrix. In other words, up to changing coordinates
of P1,an

k , we may assume that A is upper triangular. The transformation γA is then of the form

γA : z ∈ P1,an
k 7→ αz ∈ P1,an

k

or

γA : z ∈ P1,an
k 7→ z + α ∈ P1,an

k

for some α ∈ k. In both cases, the result is clear. �
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II.1.4. Loxodromic transformations and Koebe coordinates.

Definition II.1.9. A matrix in GL2(k) is said to be loxodromic if its eigenvalues in ka have distinct
absolute values.

A Möbius transformation is said to be loxodromic if some (or equivalently every) representative is.

Lemma II.1.10. Let a, b, c, d ∈ k with ad − bc 6= 0 and set A :=

(
a b
c d

)
∈ GL2(k). Then A is

loxodromic if, and only if, we have |ad− bc| < |a+ d|2.
Proof. Let λ and λ′ be the eigenvalues of A in ka. We may assume that |λ| 6 |λ′|.

If we have |λ| = |λ′|, then we have

|a+ d|2 = |λ+ λ′|2 6 |λ′|2 = |λ| |λ′| = |ad− bc|.
Conversely, if we have |λ| < |λ′|, then we have

|a+ d|2 = |λ+ λ′|2 = |λ′|2 > |λ| |λ′| = |ad− bc|.
�

Let A ∈ PGL2(k) be a loxodromic Möbius transformation.
Fix some representative B of A in GL2(k). Denote by λ and λ′ its eigenvalues in ka. We may

assume that |λ| < |λ′|. The characteristic polynomial χB of B cannot be irreducible over k, since
otherwise its roots in ka would have the same absolute values. It follows that λ and λ′ belong to k.
Set β := λ/λ′ ∈ k◦◦.

The eigenspace of B associated to the eigenvalue λ (resp. λ′) is a line in k2. Denote by α (resp. α′)
the corresponding element in P1(k).

Definition II.1.11. The elements α, α′ ∈ P1(k) and β ∈ k◦◦ depend only on A and not on the
chosen representative. They are called the Koebe coordinates of A.

There exists a Möbius transformation ε ∈ PGL2(k) such that ε(0) = α and ε(∞) = α′. The
Möbius transformation ε−1Aε now has eigenspaces corresponding to 0 and ∞ in P1(k) and the
associated automorphism of P1,an

k is

γε−1Aε : z ∈ P1,an
k 7→ βz ∈ P1,an

k .

We deduce that 0 and ∞ are respectively the attracting and repelling fixed points of γε−1Aε in P1,an
k .

It follows that α and α′ are respectively the attracting and repelling fixed points of γA in P1,an
k .

It follows from the same argument that the Koebe coordinates determine uniquely the Möbius
transformation A. In fact, given α, α′, β ∈ k with α 6= α′ and 0 < |β| < 1, the Möbius transformation
that has these elements as Koebe coordinates is given explicitly by

(II.1.4.1) M(α, α′, β) =

[
α− βα′ (β − 1)αα′

1− β βα− α′
]
,

In an analogous way, whenever ∞ ∈ P1,an
k is an attracting or repelling point of a loxodromic

Möbius transformation, we can recover the latter as:

(II.1.4.2) M(α,∞, β) =

[
β (1− β)α
0 1

]
or M(∞, α′, β) =

[
1 (β − 1)α′

0 β

]
.

Remark II.1.12. Let A ∈ PGL2(k) be a Möbius transformation that is not loxodromic. Then,
extending the scalars to k̂a and possibly changing the coordinates, the associated automorphism
of P1,an

k̂a
is a homothety

z ∈ P1,an

k̂a
7→ βz ∈ P1,an

k̂a
with |β| = 1
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or a translation
z ∈ P1,an

k̂a
7→ z + b ∈ P1,an

k̂a
.

Note that those automorphisms have several fixed points in P1,an

k̂a
(ηr with r > 0 in the first case and

r > |b| in the second). It follows that A itself also has infinitely many fixed points in P1,an
k .

II.2. Berkovich k-analytic curves

II.2.1. Berkovich A1-like curves. In this section we go one step further the study of affine and
projective lines, by introducing a class of curves that “locally look like the affine line”, and see that
there are interesting examples of curves belonging to this class.

A much more general theory of k-analytic curves exists but it will be discussed only briefly in this
text in Section II.2.2, in the case of smooth curves. For more on this topic, the standard reference
is [Ber90, Chapter 4]. The most comprehensive account to-date can be found in A. Ducros’ book
project [Duc], while deeper discussions of specific aspects are contained in the references in the
Appendix A.1 of the present text.

Definition II.2.1. A k-analytic A1-like curve is a locally ringed space in which every point admits
an open neighborhood isomorphic to an open subset of A1,an

k .

It follows from the explicit description of bases of neighborhoods of points of A1,an
k (see Propo-

sition I.3.11) that each k-analytic A1-like curve admits a covering by virtual open Swiss cheeses.
By local compactness, such a covering can always be found locally finite. It can be refined into a
partition (no longer locally finite) consisting of simpler pieces.

Theorem II.2.2. Let X be a k-analytic A1-like curve. Then, there exist
(i) a locally finite set S of type 2 points of X;
(ii) a locally finite set A of virtual open annuli of X;
(iii) a set D of virtual open discs of X

such that S ∪ A ∪ D is a partition of X.

Proof. Each virtual open Swiss cheese may be written as a union of finitely many points of type 2,
finitely many virtual open annuli and some virtual open discs (as in Example II.2.5 below). By
a combinatorial argument that is not difficult but quite lengthy, the covering so obtained can be
turned into a partition. �

Definition II.2.3. Let X be a k-analytic A1-like curve. A partition T = (S,A,D) of X satisfying
the properties (i), (ii), (iii) of Theorem II.2.2 is called a triangulation of X. The locally finite graph
naturally arising from the set

ΣT := S ∪
⋃
A∈A

ΣA

is called the skeleton of T . It is such that X − ΣT is a disjoint union of virtual open discs.
A triangulation T is said to be finite if the associated set S is finite. If this is the case, then ΣT is

a finite graph. By the results of Section I.8, for each triangulation T , ΣT may be naturally endowed
with a metric structure.

Remark II.2.4. It is more usual to define a triangulation as the datum of the set S only. Note that S
determines uniquely A and D since their elements are exactly the connected components of X − S,
so our change of convention is harmless.

Example II.2.5. Consider the curve

X := D−(0, 1)− (D+(a, r) ∪D+(b, r))
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for r ∈ (0, 1) and a, b ∈ k with |a|, |b| < 1, |a− b| > r. Set

S := {ηa,|a−b|},
A := {A−(a, |a− b|, 1), A−(a, r, |a− b|), A−(b, r, |a− b|)}

and
D := {D−(u, |a− b|) : u ∈ k, |u− a| = |u− b| = |a− b|}.

Then, the triple T := (S,A,D) is a triangulation of X. The associated skeleton is a finite tree with
three (half open) edges.

ηa,|a−b|

a

b

Figure 6. The Swiss cheese X described in Example II.2.5. Its skeleton ΣX is the
union of the three edges in evidence.

Proposition II.2.6. Let X be a connected A1-like curve. Let T = (S,A,D) be a triangulation of X
such that S 6= ∅ or A 6= ∅.

There exists a canonical deformation retraction τT : X → ΣT . Its restriction to any virtual open
annulus A ∈ A induces the map τA from Proposition I.7.11 and its restriction to any connected
component D of A− ΣA (which is a virtual open disc) induces the map τD from Proposition I.7.10.

In particular, for each η ∈ ΣA, the set τ−1
T (η) is a virtual flat closed annulus. �

Definition II.2.7. Let X be a k-analytic A1-like curve. The skeleton of X is the complement of all
the virtual open discs contained in X. We denote it by ΣX .

Remark II.2.8. Let X be a k-analytic A1-like curve. It is not difficult to check that we have

ΣX =
⋂
T

ΣT ,

for T ranging over all triangulations of X. In particular, ΣX is a locally finite metric graph (possibly
empty).
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Assume that X is connected and that ΣX is non-empty. Then there exists a triangulation T0 of X
such that ΣX = ΣT0 . In particular, there is a canonical deformation retraction τX : X → ΣX .

II.2.2. Arbitrary smooth curves. It goes beyond the scope of this survey to develop the full
theory of Berkovich analytic curves. We only state in this section a few definitions and general facts,
to which we would like to refer later.

Definition II.2.9. A smooth k-analytic curve is a locally ringed space X that is locally isomorphic
to an open subset of a Berkovich spectrum of the form Specan(A), where A is the ring of functions
on a smooth affine algebraic curve over k.

For each smooth k-analytic curve X and each complete valued extension K of k, one may define
the base-change XK of X to K, by replacing each Specan(A) by Specan(A⊗k K) in its definition. It
is a smooth K-analytic curve and there is a canonical projection morphism πK/k : XK → X. The
analogues of Proposition I.5.5 and Corollary I.5.6 hold in this more general setting.

Example II.2.10. For each complete valued extension K of k, the base-change of A1,an
k to K is

A1,an
K .

If one starts with a smooth algebraic curve X over k, one may cover it by curves of the form Spec(A),
with A as in Definition II.2.9 above, and then glue the corresponding analytic spaces Specan(A) to
get a smooth k-analytic curve, called the analytification of X , and denoted by X an.

Example II.2.11. The analytification of A1
k is A1,an

k .

As in the complex case, smooth compact k-analytic curves are automatically algebraic.

Theorem II.2.12. Let X be a smooth compact k-analytic curve. Then, there exists a projective
smooth algebraic curve over k such that X = X an.

The invariants we have defined so far for the Berkovich affine line A1,an
k have natural counterparts

for smooth k-analytic curves. Let X be a smooth k-analytic curve. For each point x ∈ X, the
completed residue field H (x) is the completion of a finitely generated extension of k of transcendence
degree less than or equal to 1. We may then define integers s(x) and t(x) such that s(x) + t(x) 6 1

and the type of x, as we did in the case of A1,an
k (see Definition I.2.9).

If x is of type 2, then, by the equality case in Abhyankar’s inequality (see Theorem I.2.8), the
group |H (x)×|/|k×| is finitely generated, hence finite, and the field extension H̃ (x)/k̃ is finitely
generated.

Let us fix the definition of genus of an algebraic curve.

Definition II.2.13. Let F be a field and let C be a projective curve over F , i.e. a connected
normal projective scheme of finite type over F of dimension 1.

If F is algebraically closed, then C is smooth, and we define the geometric genus of C to be

g(C) := dimF H
0(C,ΩC).

In general, let F̄ be an algebraic closure of F . Let C ′ be the normalization of a connected
component of C ×F F̄ . It is a projective curve over F̄ and we define the geometric genus of C to be

g(C) := g(C ′).

It does not depend on the choice of C ′.

Definition II.2.14. Let X be a smooth k-analytic curve and let x ∈ X be a point of type 2.
The residue curve at x is the unique (up to isomorphism) projective curve Cx over k̃ with function

field H̃ (x). The genus of x is the geometric genus of Cx. We denote it by g(x).
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The stable genus of x, is the genus of any point x′ over x in X
k̂a
. We denote it by gst(x). It does

not depend on the choice of x′.

Example II.2.15. Let α ∈ k and r ∈ |k×|Q. By Example I.2.10, the residue curve at the point ηα,r
in A1,an

k is the projective line P1
k̃
over k̃. In particular, we have g(ηα,r) = 0.

By Lemma I.2.11, any point of type 2 in A1,an
k (hence in any k-analytic A1-like curve) has stable

genus 0.

The fact that the stable genus does not need to coincide with the genus is what motivates our
definition. Let us give an example of this phenomenon.

Remark II.2.16. Let p > 5 be a prime number. Consider the affine analytic plane A2,an
Qp with

coordinates x, y. Let X be the smooth Qp-analytic curve inside A2,an
Qp given by the equation

y2 = x3 + p and let π : X → A1,an
Qp be the projection onto the first coordinate x.

The fiber π−1(η0,|p|−1/3) contains a unique point, that we will denote by a. One may check

that H̃ (a) is a purely transcendental extension of Fp generated by the class u of px3 (which coincides
with the class of py2):

H̃ (a) ' Fp(u).

In particular, we have Ca = P1
Fp and g(a) = 0.

Let us now extend the scalars to the field Cp, whose residue field is an algebraic closure Fp of Fp.
Let b be the unique point of XCp over a. The field H̃ (b) is now generated by the class v of p−1/3x

and the class w of p−1/2y:
H̃ (b) ' Fp(v)[w]/(v3 − w2 + 1).

In particular, Cb is an elliptic curve over Fp, and we have gst(a) = g(b) = 1.

We always have an inequality between genus and stable genus.

Lemma II.2.17. Let X be a smooth k-analytic curve and let x ∈ X be a point of type 2. Then, we
have g(x) 6 gst(x).

Proof. Let x′ be a point of X
k̂a

over x. By definition, the residue curve Cx at x is defined over k̃
and the residue curve Cx′ at x′ is defined over an algebraic closure ¯̃

k of k̃.
The projection morphism π

k̂a/k
: X

k̂a
→ X induces an isometric embedding H (x) → H (x′),

hence an embedding H̃ (x) → H̃ (x′). It follows that we have a morphism Cx′ → Cx, hence a
morphism ϕ : Cx′ → Cx ×k̃

¯̃
k. Its image is a connected component C of Cx ×k̃

¯̃
k. The morphism ϕ

factors through C, and even through the normalization C̃ of C. By definition, we have g(C̃) = g(x)
and g(Cx′) = gst(x). The result now follows from the Riemann-Hurwitz formula. �

Proposition II.2.18. Let X be a smooth k-analytic curve and let x ∈ X be a point of type 2. There
is a natural bijection between the closed points of the residue curve Cx at x and the set of directions
emanating from x in X. �

Example II.2.19. Assume that k is algebraically closed. For X = A1,an
k and x = η1, the result of

Proposition II.2.18 follows from Lemma I.3.9.

The structure of smooth k-analytic curves is well understood.

Theorem II.2.20. Every smooth k-analytic curve admits a triangulation in the sense of Theo-
rem II.2.2.
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The result of Proposition II.2.6 also extends. If T is a non-empty triangulation of a smooth
connected k-analytic curve X, then there is a canonical deformation retraction of X onto the
skeleton ΣT of T , which is a locally finite metric graph. We may also define the skeleton of X as in
Definition II.2.7, and it satisfies the properties of Remark II.2.8.

Remark II.2.21. With this purely analytic formulation, Theorem II.2.20 is due to A. Ducros, who
provided a purely analytic proof in [Duc]. It is very closely related to the semi-stable reduction
theorem of S. Bosch and W. Lütkebohmert (see [BL85]): for each smooth k-analytic curve X, there
exists a finite extension `/k such that X` admits a model over `◦ whose special fiber is a semi-stable
curve over ˜̀, that is, it is reduced and its singularities are at worst double nodes.

If a smooth k-analytic curve X admits a semi-stable model over k◦, then we may associate to
it a triangulation of X. The points of S, A and D then correspond respectively to the irreducible
components, the singular points and the smooth points of the special fiber of the model. Moreover,
the genus of a point of S (which, in this case, coincides with its stable genus) is equal to the genus
of the corresponding component. We refer to [Ber90, Theorem 4.3.1] for more details.

In the other direction, it is always possible to associate a model over k◦ to a triangulation of X,
but it may fail to be semi-stable in general. The reader may consult [Duc, §6.3 and §6.4] for general
results.

Definition II.2.22. Assume that k is algebraically closed. Let X be a smooth connected k-analytic
curve. We define the genus of X to be

g(X) := b1(X) +
∑

x∈X(2)

g(x),

where b1(X) is the first Betti number of X and X(2) the set of type 2 points of X.
If k is arbitrary, we define the genus of a smooth geometrically connected k-analytic curve X to

be the genus of X
k̂a
.

This notion of genus is compatible with the one defined in the algebraic setting.

Theorem II.2.23. For each smooth geometrically connected projective algebraic curve X over k,
we have

g(X ) = g(X an).

Let us finally comment that, among the results that are presented here, Theorem II.2.20 is deep
and difficult, but we will not need to use it since an easier direct proof is available for k-analytic
A1-like curves (see Theorem II.2.2). The others are rather standard applications of the general
theory of curves.

II.2.3. Mumford curves. Let us now return to A1-like curves over k. A special kind of such curves
is obtained by asking for the existence of an open covering made of actual open Swiss cheeses over k
rather than virtual ones. Recall that open Swiss cheeses over k are defined as the complement of
closed discs in an open disc over k.

Definition II.2.24. A connected, compact k-analytic (A1-like) curve X is called a k-analytic
Mumford curve if every point x ∈ X has a neighborhood that is isomorphic to an open Swiss cheese
over k.

Remark II.2.25. Such a curve is automatically projective algebraic by Theorem II.2.12.

The following proposition relates the definition of a k-analytic Mumford curve with the existence
of a triangulation of a certain type, and therefore with the original algebraic definition given by
Mumford in [Mum72a]. Its proof uses some technical notions that were not fully presented in the
first sections of this text, but we believe that the result of the proposition is important enough to
deserve to be fully included for completeness.
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Proposition II.2.26. Let X be a compact k-analytic curve.
If g(X) = 0, then X is a k-analytic Mumford curve if and only if X is isomorphic to P1,an

k .
If g(X) > 1, then X is a k-analytic Mumford curve if and only if there exists a triangulation

(S,A,D) of X such that the points of S are of stable genus 0 and the elements of A are open annuli.

Proof. • Assume that g(X) = 0. If X is isomorphic to P1,an
k , then it is obviously a Mumford curve.

Conversely, assume that X is a k-analytic Mumford curve. By Theorems II.2.12 and II.2.23, it is
isomorphic to the analytification of a projective smooth algebraic curve over k. Therefore, to prove
that it is isomorphic to P1,an

k , it is enough to prove that it has a k-rational point.
By assumption, X contains an open Swiss cheese over k. In particular, it contains an open

annulus A over k. Let x be a boundary point of the skeleton of A. By assumption, x has a
neighborhood that is isomorphic to an open Swiss cheese over k. It follows that A is contained
in a strictly bigger annulus A′ whose skeleton contains strictly contains that of A. Arguing this
way (possibly considering the union of all the annuli and applying the argument again), we show
that X contains an open annulus over k of infinite modulus. At least one of its boundary points is a
k-rational point, and the result follows.

• Assume that g(X) > 1. If X is a k-analytic Mumford curve, then it may be covered by finitely
many Swiss cheeses over k. The result follows from the fact that every Swiss cheese over k admits a
triangulation (S,A,D) such that the points of S are of stable genus 0 and the elements of A are
annuli.

Conversely, assume that there exists a triangulation (S,A,D) of X satisfying the properties of
the statement. Since g(X) > 1, we have A 6= ∅. Up to adding a point of S in the skeleton of each
element of A, we may assume that all the elements of A have two distinct endpoints in X.

Let x ∈ S. Denote by Dx (resp. Ax) the set of elements of D (resp. A) that have x as an endpoint
and set

Ux := {x} ∪
⋃

D∈Dx

D ∪
⋃

A∈Ax

A.

It is an open neighborhood of x in X. Let us now enlarge Ux in the following way: for each A ∈ Ax,
we paste a closed disc at the extremity of A that is different from x. The resulting curve Vx is
compact, hence the analytification of a projective smooth algebraic curve over k, by Theorem II.2.12.
Since x is of stable genus 0, the genus of the base-change (Vx)

k̂a
of Vx to k̂a is 0. By Theorem II.2.23,

we deduce that (Vx)
k̂a

is isomorphic to P1,an

k̂a
. Since Vx contains k-rational points (inside the pasted

discs, for instance), Vx itself is isomorphic to P1,an
k . We deduce that Ux is a Swiss cheese over k.

Since any point of X has a neighborhood that is of the form Ux for some x ∈ S, it follows that X
is a Mumford curve. �

Remark II.2.27. If X is a compact k-analytic curve and k is algebraically closed, then Proposi-
tion II.2.26 shows that the following properties are equivalent:

(i) X is a Mumford curve;
(ii) X is an A1-like curve;
(iii) the points of type 2 of X are all of genus 0.

Remark II.2.28. Using the correspondence between triangulations and semi-stable models (see
Remark II.2.21), the result of Proposition II.2.26 says that k-analytic Mumford curves are exactly
those for which there exists a semi-stable model over k◦ whose special fiber consists of projective
lines over k̃, intersecting transversally in k̃-rational points. This last condition is how algebraic
Mumford curves are defined in Mumford’s paper [Mum72a].

Corollary II.2.29. Let X be a k-analytic Mumford curve and T be a triangulation of X. Then the
following quantities are equal:
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(i) the genus of X;
(ii) the cyclomatic number of the skeleton ΣT ;
(iii) the first Betti number of X.

Proof. We may assume that T = (S,A,D) satisfies the conclusions of Proposition II.2.26. We will
assume that A 6= ∅, the other case being dealt with similarly. Consider the base-change morphism
π
k̂a/k

: X
k̂a
→ X. By assumption, every element A of A is an annulus over k, hence its preimage

π−1

k̂a/k
(A) is an annulus over k̂a. In particular, π

k̂a/k
induces a homeomorphism between the skeleton

of π−1

k̂a/k
(A) and that of A. Since each point of S lies at the boundary of the skeleton of an element

of A, we deduce that each point of S has exactly one preimage by π
k̂a
.

It follows that the set T ′ = (S′,A′,D′) of X
k̂a
, where

• S′ is the set of preimages of the elements of S by π
k̂a/k

;
• A′ is the set of preimages of the elements of A by π

k̂a/k
;

• D′ is the set of connected components of the preimages of the elements of D by π
k̂a/k

is a triangulation of X
k̂a

and, moreover, that π
k̂a/k

induces a homeomorphism between the skeleta ΣT ′

and ΣT . In particular, their cyclomatic numbers are equal.
Since X is a Mumford curve, all the points of type 2 of the curve X

k̂a
are of genus 0, hence the

genus of X
k̂a

coincides with its first Betti number, hence with the cyclomatic number of ΣT ′ , by
Proposition II.2.6. The equality between (i) and (ii) follows.

The equality between (ii) and (iii) follows from Proposition II.2.6 again. �

II.3. Schottky groups

Let (k, | · |) be a complete valued field. Some of the material of this section is adapted from
Mumford [Mum72a], Gerritzen and van der Put [GvdP80] and Berkovich [Ber90, Section 4.4].

II.3.1. Schottky figures. Let g ∈ N>1.

Definition II.3.1. Let γ1, . . . , γg ∈ PGL2(k). Let B = (D+(γεi ), 1 6 i 6 g, ε ∈ {±1}) be a family
of pairwise disjoint closed discs in P1,an

k . For each i ∈ {1, . . . , g} and ε ∈ {−1, 1}, set
D−(γεi ) := γεi (P1

k −D+(γ−εi )).

We say that B is a Schottky figure adapted to (γ1, . . . , γg) if, for each i ∈ {1, . . . , g} and ε ∈ {−1, 1},
D−(γεi ) is a maximal open disc inside D+(γεi ).

Remark II.3.2. Let i ∈ {1, . . . , g}. It follows from Remark II.1.12 that γi is loxodromic. Moreover,
denoting by αi and α′i the attracting and repelling fixed points of γi respectively, we have

α′i ∈ D−(γ−1
i ) and αi ∈ D−(γi).

The result is easily proven for γ =

[
1 0
0 q

]
and one may reduce to this case by choosing a suitable

coordinate on P1,an
k .

For the rest of the section, we fix γ1, . . . , γg ∈ PGL2(k) and a Schottky figure adapted to
(γ1, . . . , γg), with the notation of Definition II.3.1.

Notation II.3.3. For σ ∈ {−,+}, we set

F σ := P1
k −

⋃
16i6g
ε=±1

D−σ(γεi ).
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D+(γ1)

D+(γ−1
1 )

D+(γ2)

D+(γ−1
2 )

γ2

γ2

γ1

γ1

Figure 7. A Schottky figure adapted to a pair (γ1, γ2).

Note that, for γ ∈ {γ±1
1 , . . . , γ±1

g }, D+(γ) is the unique disc that contains γ(F+) among those
defining the Schottky figure.

Remark II.3.4. The sets F− and F+ are open and closed Swiss cheeses respectively.
Denote by ∂F+ the boundary of F+ in P1,an

k . It is equal to the set of boundary points of the
D+(γ±1

i )’s, for i ∈ {1, . . . , g}. The skeleton ΣF+ of F+ is the convex envelope of ∂F+, that is to
say the minimal connected graph containing ∂F+, or

ΣF+ =
⋃

x,y∈∂F+

[x, y].

The skeleton ΣF− of F− satisfies

ΣF− = ΣF+ ∩ F− = ΣF+ − ∂F+.

Set ∆ := {γ1, . . . , γg}. Denote by Fg the abstract free group with set of generators ∆ and by Γ the
subgroup of PGL2(k) generated by ∆. The existence of a Schottky figure for the g-tuple (γ1, . . . , γg)
determines important properties of the group Γ. In fact, we have a natural morphism ϕ : Fg → Γ

inducing an action of Fg on P1,an
k . We now define a disc in P1

k associated with every elements of Fg.
As usual, we will identify these elements with the words over the alphabet ∆± := {γ±1

1 , . . . , γ±1
g }.

Notation II.3.5. For a non-empty reduced word w = w′γ over ∆ and σ ∈ {−,+}, we set

Dσ(w) := w′Dσ(γ).

Lemma II.3.6. Let u be a non-empty reduced word over ∆±. Then we have uF+ ⊆ D+(u).
Let v be a non-empty reduced word over ∆±. If there exists a word w over ∆± such that u = vw,

then we have uF+ ⊆ D+(u) ⊆ D+(v). If, moreover, u 6= v, then we have D+(u) ⊆ D−(v).
Conversely, if we have D+(u) ⊆ D+(v), then there exists a word w over ∆± such that u = vw.

Proof. Write in a reduced form u = u′γ with γ ∈ ∆±. We have γF+ ⊆ D+(γ), by definition.
Applying u′, it follows that uF+ ⊆ D+(u).
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Assume that there exists a word w such that u = vw and let us prove that D+(u) ⊆ D+(v). We
first assume that v is a single letter. We will argue by induction on the length |u| of u. If |u| = 1,
then u = v and the result is trivial. If |u| > 2, denote by δ the first letter of w. By induction, we
have D+(w) ⊆ D+(δ). Since δ 6= v−1, we also have D+(δ) ⊆ P1

k −D+(v−1). The result follows by
applying v.

Let us now handle the general case. Write in a reduced form v = v′γ with γ ∈ ∆±. By the former
case, we have D+(γw) ⊆ D+(γ) and D+(γw) ⊆ D−(γ) if w is non-empty. The result follows by
applying v′.

Assume that we have D+(u) ⊆ D+(v). We will prove that there exists a word w such that u = vw
by induction on |v|. Write in reduced forms u = γu′ and v = δv′. By the previous result, we have
D+(u) ⊆ D+(γ) and D+(v) ⊆ D+(δ), hence γ = δ. If |v| = 1, this proves the result. If |v| > 2, then
we deduce that we have D+(u′) ⊆ D+(v′), hence, by induction, there exists a word w such that
u′ = v′w. It follows that u = vw. �

Proposition II.3.7. The morphism ϕ is an isomorphism and the group Γ is free on the generators
γ1, . . . , γg.

Proof. If w is a non-empty word, then the previous lemma ensures that wF+ 6= F+. The result
follows. �

As a consequence, we now identify Γ with Fg and express the elements of Γ as words over the
alphabet ∆±. In particular, we allow us to speak of the length of an element γ of Γ, that we denote
by |γ|. Set

On :=
⋃
|γ|6n

γF+.

Since the complement of F+ is the disjoint union of the open disks D−(γ) with γ ∈ ∆±, it follows
from the description of the action that, for each n > 0, we have

P1,an
k −On =

⊔
|w|=n+1

D−(w).

It follows from Lemma II.3.6 that, for each n > 0, On is contained in the interior of On+1. We set

O :=
⋃
n>0

On =
⋃
γ∈Γ

γF+.

We now compute the orbits of discs under homographies of P1,an
k . Set ι :=

[
0 1
1 0

]
∈ PGL2(k). It

corresponds to the map z 7→ 1/z on P1,an
k . The first result follows from an explicit computation.

Lemma II.3.8. Let α ∈ k× and ρ ∈ [0, |α|). Then, we have ι
(
D+(α, ρ)

)
= D+

(
1
α ,

ρ
|α|2

)
. �

Lemma II.3.9. Let r > 0 and let γ =

[
a b
c d

]
in PGL2(k) such that γ

(
D+(0, r)

)
⊆ A1,an

k . Then,

we have |d| > r|c| and γ
(
D+(0, r)

)
= D+

(
b
d ,
|ad−bc| r
|d|2

)
.

Proof. Let us first assume that c = 0. Then, we have d 6= 0, so the inequality |d| > r|c| holds, and γ
is affine with ratio a/d. The result follows.

Let us now assume that c 6= 0. In this case, we have γ−1(∞) = −d
c , which does not belong

to D(0, r) if, and only if, |d| > r|c|. Note that we have the following equality in k(T ):
aT + b

cT + d
=
a

c
− ad− bc

c2

1

T + d
c

.
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By Lemma II.3.8, there exist β ∈ k and σ > 0 such that ι
(
D+(dc , r)

)
= D+(β, σ). Then, we have

γ
(
D+(0, r)

)
= D+(ac − ad−bc

c2
β,
∣∣ad−bc

c2

∣∣σ) and the result follows from an explicit computation. �

Lemma II.3.10. Let D′ ⊆ D be closed discs in A1,an
k . Let γ ∈ PGL2(k) such that γD′ ⊆ γD ⊆ A1,an

k .
Then, we have

radius of γD′

radius of γD
=

radius of D′

radius of D
.

Proof. Let p be a k-rational point in D′ and let τ be the translation sending p to 0. Up to changing D
into τD, D′ into τD′, γ into γτ−1 and γ′ into γ′τ−1, we may assume that D and D′ are centered
at 0. The result then follows from Lemma II.3.9. �

Proposition II.3.11. Assume that ∞ ∈ F−. Then, there exist R > 0 and c ∈ (0, 1) such that, for
each γ ∈ Γ− {id}, D+(γ) is a closed disc of radius at most Rc|γ|.

Proof. Let δ, δ′ ∈ ∆± such that δ′ 6= δ−1. By Lemma II.3.6, we have D+(δ′δ) ⊂ D−(δ′) ⊆ D+(δ′).
Set

cδ,δ′ :=
radius of fδ,δ′(D+(δ′δ))

radius of fδ,δ′(D+(δ′))
∈ (0, 1).

For each γ ∈ Γ such that γδ′ is a reduced word, by Lemma II.3.10, we have

radius of D+(γδ′δ)

radius of D+(γδ′)
=

radius of γf−1
δ,δ′fδ,δ′(D

+(δ′δ))

radius of γf−1
δ,δ′fδ,δ′(D

+(δ′))
6 cδ,δ′ .

Set
R := max({radius of D+(γ) | γ ∈ ∆±})

and
c := max({cγ,γ′ | γ, γ′ ∈ ∆±, γ′ 6= γ−1}).

By induction, for each γ ∈ Γ− {id}, we have

radius of D+(γ) 6 Rc|γ|.

�

Corollary II.3.12. Every element of Γ− {id} is loxodromic.

Proof. In order to prove the result, we may extend the scalars. As a result, we may assume that
F− ∩ P1,an

k (k) 6= ∅, hence up to changing coordinates, that ∞ /∈ F−. Let γ ∈ Γ − {id}. By
Proposition II.3.11 the radii of the discs γn(D+(γ)) tend to 0 when n tends to ∞, which forces γ to
be loxodromic, by Remark II.1.12. �

Corollary II.3.13. Let w = (wn) 6=0 be a sequence of reduced words over ∆± such that the associated
sequence of discs (D+(wn))n>0 is strictly decreasing. Then, the intersection

⋂
n>0D

+(wn) is a single
k-rational point pw. Moreover, the discs D+(wn) form a basis of neighborhoods of pw in P1,an

k .

Proof. Let k0 be a finite extension of k such that F−∩P1(k0) 6= ∅. Consider the projection morphism
π0 : P1,an

k0
→ P1,an

k . For each i ∈ {1, . . . , g}, γi may be identified with an element γi,0 in PGL2(k0).
The family (π−1

0 (D−(γ±1
i ), 1 6 i 6 g, ε = ±1) is a Schottky figure adapted to (γ1,0, . . . , γg,0). We

will denote with a subscript 0 the associated sets: F−0 , D+
0 (w), etc. Note that these sets are all

equal to the preimages of the corresponding sets by π0.
Up to changing coordinates on P1,an

k0
, we may assume that ∞ ∈ F−0 . The sequence of discs

(D+
0 (wn))n>0 is strictly decreasing, so by Lemma II.3.6, the length of wn tends to ∞ when n goes

to ∞ and, by Proposition II.3.11, the radius of D+
0 (wn) tends to 0 when n goes to ∞. It follows that
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⋂
n>0D

+
0 (wn) is a single point pw,0 of type 1 and that the discs D+

0 (wn) form a basis of neighborhood
of pw,0 in P1,an

k0
.

Set pw := π0(pw,0). It follows from the results over k0 that
⋂
n>0D

+(wn) = {pw} and that the
discs D+(wn) form a basis of neighborhoods of pw in P1,an

k .
It remains to show that pw is k-rational. Note that pw belongs to the closure of P1(k), since it

is the limit of the centers of the D+(wn)’s. Since k is complete, P1(k) is closed in P1(k̂a) and the
result follows. �

Corollary II.3.14. The set O is dense in P1,an
k and its complement is contained in P1(k). �

Definition II.3.15. We say that a point x ∈ P1,an
k is a limit point if there exist x0 ∈ P1,an

k and a
sequence (γn)n>0 of distinct elements of Γ such that limn→∞ γn(x0) = x.

The limit set L of Γ is the set of limit points of Γ.

Let us add a short reminder on proper group actions.

Definition II.3.16 ([Bou71, III, §4, Définition 1]). We say that the action of a topological group G
on a topological space E is proper if the map

Γ× E → E × E
(γ, x) 7→ (x, γ · x)

is proper.

Proposition II.3.17 ([Bou71, III, §4, Propositions 3 and 7]). Let G be a locally compact topological
group and E be a Hausdorff topological space. Then, the action of G on E is proper if, and only
if, for every x, y ∈ E, there exist neighborhoods Ux and Uy of x and y respectively such that the set
{γ ∈ Γ | γUx ∩ Uy 6= ∅} is relatively compact (that is to say finite, if G is discrete).

In this case, the quotient space Γ\E is Hausdorff. �

We denote by C the set of points x ∈ P1,an
k that admit a neighborhood Ux satisfying {γ ∈ Γ |

γUx ∩ Ux 6= ∅} = {id}. The set C is an open subset of P1,an
k and the quotient map C → Γ\C is a

local homeomorphism. In particular, the topological space Γ\C is naturally endowed with a structure
of analytic space via this map.

Theorem II.3.18. We have O = C = P1,an
k − L. Moreover, the action of Γ on O is free and proper

and the quotient Γ\O is a Mumford curve of genus g.
Set X := Γ\O and denote by p : O → X the quotient map. Let ΣO, ΣF+ and ΣX denote the

skeleta of O, F+ and X respectively. Then, ΣO is the trace on O of the convex envelope of L:

ΣO = O ∩
⋃
x,y∈L

[x, y]

and we have
p−1(ΣX) = ΣO and p(ΣO) = p(ΣF+) = ΣX .

Proof. Let x ∈ L. By definition, there exists x0 ∈ P1,an
k and a sequence (γn)n>0 of distinct elements

of Γ such that limn→∞ γn(x0) = x. Assume that x ∈ F+. Since F+ is contained in the interior
of O1, there exists N > 0 such that γN (x0) ∈ O1, hence we may assume that x0 ∈ O1. Lemma II.3.6
then leads to a contradiction. It follows that L does not meet F+, hence, by Γ-invariance, L is
contained in P1,an

k −O.
Let y ∈ P1,an

k − O. By definition, there exists a sequence (wn)n>0 of reduced words over ∆±

such that, for each n > 0, |wn| > n and y ∈ D−(wn). Let y0 ∈ F−. By Lemma II.3.6, for each
n > 0, we have wn(y0) ∈ D−(wn) and the sequence of discs (D+(wn))n>0 is strictly decreasing. By
Corollary II.3.13, (wn(y0))n>0 tends to y, hence y ∈ L. It follows that P1,an

k −O = L.
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Set
U := F+ ∪

⋃
γ∈∆±

γF− = P1,an
k −

⊔
|γ|=2

D+(γ).

It is an open subset of P1,an
k and it follows from the properties of the action (see Lemma II.3.6) that

we have {γ ∈ Γ | γU ∩ U 6= ∅} = {id} ∪∆±. Using the fact that the stabilizers of the points of U
are trivial, we deduce that U ⊆ C. Letting Γ act, it follows that O ⊆ C. Since no limit point may
belong to C, we deduce that this is actually an equality.

We have already seen that the action is free on O. Let us prove that it is proper. Let x, y ∈ O.
There exists n > 0 such that x and y belong to the interior of On. By Lemma II.3.6, the set
{γ ∈ Γ | γOn ∩On 6= ∅} is made of elements of length at most 2n+ 1. In particular, it is finite. We
deduce that the action of Γ on O is proper.

The compact subset F+ of P1,an
k contains a point of every orbit of every element of O. It follows

that Γ\O is compact. The set F− is an open k-Swiss cheese and the map p is injective on it, which
implies that p|F− induces an isomorphism onto its image. In addition, one may check that each
subset of the form D+(γ) − D−(γ) for γ ∈ {γ±1

1 , . . . , γ±1
g } is contained in an open k-annulus on

which p is injective. It follows that any element of Γ\O has a neighborhood isomorphic to a k-Swiss
cheese, hence Γ\O is a Mumford curve.

Set Σ := O∩⋃x,y∈L[x, y]. It is clear that no point of Σ is contained in a virtual open disc inside O,
hence Σ ⊆ ΣO. It follows from Proposition I.6.10 that P1,an

k − Σ is a union of virtual open discs,
hence ΣO ∩ (P1,an

k − Σ) = ∅. We deduce that ΣO = Σ. Note that it follows that ΣF+ = ΣO ∩ F+.
Let x ∈ O − ΣO. Then x is contained in a virtual open disc inside O. Assume that there

exists γ ∈ Γ such that x ∈ γF−. Then, the said virtual open disc is contained in γF−. Since
p|γF− induces an isomorphism onto its image, p(x) is contained in a virtual open disc in X, hence
p(x) /∈ ΣX . As above, the argument may be adapted to handle all the points of O − ΣO. It follows
that p−1(ΣX) ⊆ ΣO.

Let x ∈ ΣO. In order to show that p(x) ∈ ΣX , we may replace x by γ(x) for any γ ∈ Γ, hence
assume that x ∈ F+ ∩ ΣO = ΣF+ . From the explicit description of the action of Γ on F+, we may
describe precisely the behaviour of p on ΣF+ = ΣF− ∪ ∂F+: it is injective on ΣF− and identifies
pairs of points in ∂F+. It follows that p(x) belongs to a injective loop inside X and Remark II.2.8
then ensures that p(x) ∈ ΣX . The results about the skeleta follow directly.

It remains to prove that the genus of X = Γ\O is equal to g. The arguments above show that
ΣX ' Γ\ΣF+ is a graph with cyclomatic number g. The result now follows from Corollary II.2.29. �

Example II.3.19 (Tate curves). If g = 1 in the theory above, one starts with the datum of an
element γ ∈ PGL2(k) and of two disjoint closed discs D+(γ) and D+(γ−1) in such a way that
γ(P1,an

k −D+(γ−1)) is a maximal open disc inside D+(γ). Since γ is loxodromic, up to conjugation it

is represented by a matrix of the form
[
q 0
0 1

]
for some q ∈ k satisfying 0 < |q| < 1. In other words,

up to a change of coordinate in P1,an
k , the transformation γ is the multiplication by q and hence the

limit set L consists only of the two points 0 and ∞. The quotient curve obtained from applying
Theorem II.3.18 is an elliptic curve, whose set of k-points is isomorphic to the multiplicative group
k×/qZ.

Remark II.3.20. It follows from Theorem II.3.18 and Corollary II.3.13 that each point in the limit
set may be described as the intersection of a nested sequence of discs of the form

⋂
n>0D

+(wn), for
a sequence of words wn whose lengths tend to infinity. This is a rather concrete description, that
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Figure 8. The closed fundamental domain F+ (on the left) of the Schottky group
Γ is a Swiss cheese. The group Γ identifies the ends of the skeleton ΣF+ , so that the
corresponding Mumford curve (on the right) contains the finite graph ΣX .

could easily be implemented to any precision on a computer. The complex version of this idea gave
rise to beautiful pictures in [MSW15].

Actually, we highly recommend the whole book [MSW15] to the reader. It starts with the example
of a complex Schottky group with two generators in a very accessible way and then presents a large
amount of advanced material in a carefully explained way, with an original and colorful terminology,
enriched with many pictures. Among the subjects covered are the Hausdorff dimension of the limit
set (“fractal dust”), the degeneration of the notion of Schottky groups when the discs in the Schottky
figures become tangent (“kissing Schottky groups”), etc. We believe that it is worth investigating
those questions in the non-Archimedean setting too. In particular, finding a way to draw meaningful
non-Archimedean pictures would certainly be very rewarding.

II.3.2. Group-theoretic version. We now give the general definition of Schottky group over k
and explain how it relates to the geometric situation considered in the previous sections. As regards
proper action, recall Definition II.3.16 and Proposition II.3.17.

Definition II.3.21. A subgroup Γ of PGL2(k) is said to be a Schottky group over k if
(i) it is free and finitely generated;
(ii) all its non-trivial elements are loxodromic;
(iii) there exists a non-empty Γ-invariant connected open subset of P1,an

k on which the action of Γ
is free and proper.

Remark II.3.22. Schottky groups are discrete subgroups of PGL2(k). Indeed any element of PGL2(k)
that is close enough to the identity has both eigenvalues of absolute value 1, hence cannot be
loxodromic.

Remark II.3.23. There are other definitions of Schottky groups in the literature. L. Gerritzen and
M. van der Put use a slightly different version of condition (iii) (see [GvdP80, I (1.6)]). This is due
to the fact that they work in the setting of rigid geometry, where the space consists only of our
rigid points. We chose to formulate our definition this way in order to take advantage of the nice
topological properties of Berkovich spaces and make it look closer to the definition used in complex
geometry.

D. Mumford considered a more general setting where k is the fraction field of a complete integrally
closed noetherian local ring and he requires only properties (i) and (ii) in his definition of Schottky
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group (see [Mum72a, Definition 1.3]). The intersection with our setting consists of the complete
discretely valued fields k.

However, when k is a local field, all the definitions coincide (see [GvdP80, I (1.6.4)] and Sec-
tion II.3.4).

Schottky groups arise naturally when we have Schottky figures as in Section II.3.1. Indeed, the
following result follows from Proposition II.3.7, Corollary II.3.12 and Theorem II.3.18.

Proposition II.3.24. Let Γ be a subgroup of PGL2(k) generated by finitely many elements γ1, . . . , γg.
If there exists a Schottky figure adapted to (γ1, . . . , γg), then Γ is a Schottky group. �

We now turn to the proof of the converse statement.

Lemma II.3.25. Let γ be a loxodromic Möbius transformation. Let A and A′ be disjoint virtual flat
closed annuli. Denote by I the open interval given as the interior of the path joining their boundary
points. Assume that γA1 = A2 and γI ∩I = ∅. For ε ∈ {∅,′ }, denote by Dε the connected component
of P1,an

k −Aε that does not meet I. Then, for ε ∈ {∅,′ }, Aε is a flat closed annulus, Dε is an open
disc, Eε := Dε ∪Aε is a closed disc and we have

γD = P1,an
k − E′ and γE = P1,an

k −D′.

Proof. For each ε ∈ {∅,′ }, Dε and Eε are respectively a virtual open disc and a virtual closed disc.
Note that the set P1,an

k −Aε has two connected components, namely Dε and P1,an
k −Eε, and that

the latter contains I.
Since γ is an automorphism, it sends the connected component P1,an

k − E of P1,an
k − A to a

connected component C of P1,an
k − γA = P1,an

k −A′. Denote by η and η′ the boundary points of A
and A′. Let z ∈ P1,an

k − E. The unique path [η, z] between η and z then meets I. Its image is the
unique path [η′, γ(z)] between γ(η) = η′ and γ(z). If γ(z) /∈ E′, then this path meets I, contradicting
the assumption γI ∩ I = ∅. We deduce that γ(z) ∈ E′, hence that C = D′. It follows that we have

γD = P1,an
k − E′ and γE = P1,an

k −D′,
as wanted.

In particular, D and D′ contain respectively the attracting and repelling fixed point of γ. Since
those points are k-rational, we deduce that D and D′ are discs. The rest of the result follows. �

Theorem II.3.26. Let Γ be a Schottky group over k. Then, there exists a basis β of Γ and a
Schottky figure B that is adapted to β.

Proof. By assumption, there exists a non-empty Γ-invariant connected open subset U of P1,an
k on

which the action of Γ is free and proper. The quotient X := Γ\U is then an A1,an
k -like curve in the

sense of Section II.2.1. Since U is a connected subset of P1,an
k , it is simply connected, hence the

fundamental group π1(X) of X is isomorphic to Γ. Since X is finitely generated, the topological
genus g of X is finite.

Fix a skeleton Σ of X and consider the associated retraction τ : X → Σ. Fix g elements γ1, . . . , γg
of Γ corresponding to disjoint simple loops in ΣX . Note that γ1, . . . , γg is a basis of Γ.

For each i ∈ {1, . . . , g}, pick a point xi ∈ αi that is not a branch point of Σ. Its preimage by the
retraction Ai := τ−1(xi) is then a virtual flat closed annulus.

Let Y ′ be an open subset of U such that the morphism Y ′ → X induced by the quotient is an
isomorphism onto X −⋃16i6g. We extend it to a compact lift Y of X in U by adding, for each
i ∈ {1, . . . , g}, two virtual flat annuli Bi and B′i that are isomorphic preimages of Ai. Up to switching
the names, we may assume that γiBi = B′i.
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Let i ∈ {1, . . . , g}. The complement of Bi (resp. B′i) has two connected components. Let us
denote by D−(γi) (resp. D−(γ−1

i )) the one that does not meet Y . It is a virtual open disc. We set
D+(γ−1

i ) = D−(γ−1
i ) ∪Bi and D+(γi) = D−(γi) ∪B′i.

By construction of Y ′, for each γ ∈ Γ − {id}, we have γY ′ ∩ Y ′ = ∅. It now follows from
Lemma II.3.25 that the family (D+(γσi ), 1 6 i 6 g, σ = ±) is a Schottky figure adapted to
(γ1, . . . , γg).

�

Remark II.3.27. The fact that Γ is free is actually not used in the proof of Theorem II.3.26. As a
result, Proposition II.3.24 shows that it is a consequence of the other properties appearing in the
definition of a Schottky group. It could also be deduced from the fact that the fundamental group of
a Berkovich curve (which is the same as that of its skeleton) is free.

II.3.3. Twisted Ford discs. We can actually be more precise about the form of the discs in the
Schottky figure from Theorem II.3.26. To do so, we introduce some terminology.

Definition II.3.28. Let γ =

[
a b
c d

]
∈ PGL2(k), with c 6= 0, be a loxodromic Möbius transformation

and let λ ∈ R>0. We call open and closed twisted Ford discs associated to (γ, λ) the sets

D−(γ,λ) :=
{
z ∈ k

∣∣∣ λ|γ′(z)| = λ
|ad− bc|
|cz + d|2 > 1

}
and

D+
(γ,λ) :=

{
z ∈ k

∣∣∣ λ|γ′(z)| = λ
|ad− bc|
|cz + d|2 > 1

}
.

Lemma II.3.29. Let α, α′, β ∈ k with α 6= α′ and |β| < 1 and let λ ∈ R>0. Set γ := M(α, α′, β) =[
a b
c d

]
. The twisted Ford discs D−(γ,λ) and D+

(γ,λ) have center

α′ − βα
1− β = −d

c

and radius

ρ =
(λ|β|)1/2|α− α′|

|1− β| =
(λ |ad− bc|)1/2

|c| .

In particular, α′ ∈ D−(γ,λ) if, and only if, |β| < λ.
The twisted Ford discs D−

(γ−1,λ−1)
and D+

(γ−1,λ−1)
have center

α− βα′
1− β =

a

c

and radius ρ′ = ρ/λ.
In particular, α ∈ D−

(γ−1,λ−1)
if, and only if, |β| < λ−1. �

Lemma II.3.30. Let γ ∈ PGL2(k) be a loxodromic Möbius transformation that does not fix ∞ and
let λ ∈ R>0. Then, we have γ(D+

(γ,λ)) = P1,an
k −D−

(γ−1,λ−1)
.

Proof. Let us write γ =

[
a b
c d

]
. Since γ does not fix ∞, we have c 6= 0. Let K be a complete valued

extension of k and let z ∈ K. We have | − cγ(z) + a| |cz + d| = |ad− bc|, hence

z ∈ D(γ,λ) ⇐⇒ λ
|ad− bc|
|cz + d|2 ≥ 1 ⇐⇒ λ−1 |ad− bc|

| − cγ(z) + a|2 ≤ 1.
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Since we have γ−1 =

[
d −b
−c a

]
, the latter condition describes precisely the complement of D−

(γ−1,λ−1)
.

�

Lemma II.3.31. Let γ ∈ PGL2(k) be a loxodromic Möbius transformation. Let D+(γ) and D+(γ−1)

be disjoint closed discs in P1,an
k . Set

D−(γ) := γ(P1,an
k −D+(γ−1)) and D−(γ−1) := γ−1(P1,an

k −D+(γ)).

Assume that D−(γ) and D−(γ−1) are maximal open discs inside D+(γ) and D+(γ−1) respectively
and that they are contained in A1,an

k .
Then, there exists λ ∈ R>0 such that, for each σ ∈ {−,+}, we have

Dσ(γ) = Dσ
γ,λ and Dσ(γ−1) = Dσ

γ−1,λ−1 .

Proof. Denote by α and α′ the attracting and repelling fixed points of γ respectively. By the same
argument as in Remark II.3.2, we have α ∈ D−(γ−1) and α′ ∈ D−(γ). Let r, r′ > 0 such that
D−(γ) = D−(α′, r′) and D−(γ−1) = D−(α, r).

Write γ =

[
a b
c d

]
with a, b, c, d ∈ k. Since α, α′ ∈ A1,an

k , we have c 6= 0. By assumption,

∞ ∈ γ(D−(γ−1)), hence −d/c ∈ D−(γ−1) and D−(γ−1) = D−(−d/c, r). Similarly, we have
D−(γ) = D−(a/c, r′).

Writing
aT + b

cT + d
=
a

c
− ad− bc

c2

1

T + d
c

,

it is not difficult to compute γ(D−(γ−1)) and prove that we have

r =
|ad− bc|
|c|2 r′ =

|β| |α− α′|2
r′

.

Set

λ :=
r2

|β| |α− α′|2 =
r

r′
=
|β| |α− α′|2

(r′)2
.

Since D+(γ) and D+(γ−1) are disjoint, we have max(r, r′) < |α− α′|, hence |β| < min(λ, λ−1). It
follows that D−γ,λ and D−

γ−1,λ−1 contains respectively α′ and α, hence

D−(γ,λ) = D−(α′, r′) = D−(γ) and D−
(γ−1,λ−1)

= D−(α, r) = D−(γ−1).

�

Corollary II.3.32. Let Γ be a Schottky group over k whose limit set does not contain ∞. Then,
there exists a basis (γ1, . . . , γg) of Γ and λ1, . . . , λg ∈ R>0 such that the family of discs

(
D+

(γεi ,λ
ε
i )
, 1 6

i 6 g, ε ∈ {±1}
)
is a Schottky figure that is adapted to (γ1, . . . , γg).

Proof. By Theorem II.3.26, there exists a basis β = (γ1, . . . , γg) of Γ and a Schottky figure B =
(D+(γεi ), 1 6 i 6 g, ε ∈ {±1}) that is adapted to β. As in Section II.3.1, define the open discs
D−(γ±1

i and set
F+ := P1

k −
⋃

16i6g
ε=±1

D−(γεi ).

By Theorem II.3.18, since ∞ is not a limit point of Γ, there exists γ ∈ Γ such that ∞ ∈ γF+.
Set β′ := (γγ1γ

−1, . . . , γγgγ
−1). It is a basis of Γ and the family of discs B′ := (γD+(γεi ), 1 6 i 6

g, ε ∈ {±1}) is a Schottky figure that is adapted to it. Since all the discs γD+(γ±1
i ) are contained

in A1,an
k , we may now apply Lemma II.3.31 to conclude. �
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II.3.4. Local fields. When k is a local field, the definition of a Schottky group can be greatly
simplified. Our treatment here borrows from [GvdP80, I (1.6)] (see also [Mar07, Lemma 2.1.1] in
the complex setting).

Lemma II.3.33. Let (γn)n∈N be a sequence of loxodromic Möbius transformations such that
(i) (γn)n∈N has no convergent subsequence in PGL2(k);
(ii) the sequence of Koebe coordinates ((αn, α

′
n, βn))n∈N converges to some (α, α′, β) ∈ (P1(k))3.

Then, (γn)n∈N converges to the constant function α uniformly on compact subsets of P1,an
k − {α′}.

Proof. By definition, for each n ∈ N, we have |βn| < 1, which implies that |β| < 1.
Up to changing coordinates, we may assume that α, α′ ∈ k. Up to modifying finitely many terms

of the sequences, we may assume that, for each n ∈ N, we have αn, α′n ∈ k. In this case, for each
n ∈ N, we have

γn =:

[
αn − βnα′n (βn − 1)αnα

′
n

1− βn βnαn − α′n

]
in PGL2(k).

The determinant of the above matrix is βn(αn − α′n)2. Since (γn)n∈N has no convergent subsequence
in PGL2(k), we deduce that β(α − α′)2 = 0. In each of the two cases β = 0 and α = α′, it is not
difficult to check that the claimed result holds.

�

The result below shows that the definition of Schottky group may be simplified when k is a local
field. Note that, in this case, P1(k) is compact, hence closed in P1,an

k .

Corollary II.3.34. Assume that k is a local field. Let Γ be a subgroup of PGL2(k) all of whose
non-trivial elements are loxodromic.

Let Λ be the set of fixed points of the elements of Γ− {id} and let Λ̄ be its closure in P1,an
k . Then,

Λ̄ is a compact subset of P1,an
k that is contained in P1(k) and the action of Γ on P1,an

k − Λ̄ is free and
proper.

Proof. Since k is locally compact for the topology given by the absolute value, P1(k) is compact.
By Remark I.3.1, the topology on k given by the absolute value coincides with that induced by the
topology on A1,an

k . We deduce that P1(k) is a compact subset of P1,an
k . It follows that Λ̄ is contained

in P1(k) and that it is compact, as it is closed.
The action of Γ is obviously free on P1,an

k − Λ̄. Assume, by contradiction, that it is not proper.
Then, there exist x, y /∈ Λ̄ such that, for every neighborhoods U and V of x and y respectively, the
set {γ ∈ Γ | γU ∩ V 6= ∅} is infinite.

Since k is a local field, Corollary I.3.6 ensures that the space A1,an
k is metrizable. In particular,

we may find countable bases of neighborhoods (Un)n∈N and (Vn)n∈N of x and y respectively. By
assumption, there exist a sequence (γn)n∈N of distinct elements of Γ and a sequence (xn)n∈N of
elements of P1,an

k − Λ̄ such that, for each n ∈ N, we have xn ∈ Un and γn(xn) ∈ Vn. In particular,
(xn)n∈N converges to x and (γn(xn))n∈N converges to y.

Since all the non-trivial elements of Γ are loxodromic, by the same argument as in Remark II.3.22,
the group Γ is discrete. As a result, up to passing to a subsequence, we may assume that the
assumptions of Lemma II.3.33 are satisfied. Define α and α′ as in this Lemma. Since x does not
belong to Λ̄, it cannot be equal to α′. It follows that the sequences (γn(xn))n∈N and (γn(x))n∈N
converge to the same limit y = α, and we get a contradiction since α ∈ Λ̄.

�

Corollary II.3.35. Assume that k is a local field. Then, a subgroup Γ of PGL2(k) is a Schottky
group if, and only if, it is finitely generated and all its non-trivial elements are loxodromic. �
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II.4. Uniformization of Mumford curves

The main result of this section, Theorem II.4.3, states that the procedure described in Section II.3.1
can be reversed: any Mumford curve may be uniformized by an open subset of the Berkovich projective
line P1,an

k with a Schottky group as group of deck transformations. The consequences of this result
are many and far-reaching. Some of them are discussed in Appendix A.3.

This was first proved by D. Mumford in his influential paper [Mum72a], where he introduces this
as a non-Archimedean analogue of the uniformization of handlebodies by means of Schottky groups
in the complex setting. His arguments make a heavy use of formal models of the curves. Here, we
argue directly on the curves themselves, following the strategy of [GvdP80, Chapter IV] and [Lüt16,
Proposition 4.6.6]. Note, however that the proof in the first reference is flawed (since it relies on the
wrong claim that every k-analytic curve of genus 0 embeds into P1,an

k , see Remark II.4.7) and that
the second reference assumes that the curve contains at least three rational points.

As an application, we discuss how Theorem II.4.3 can be used to study the automorphism groups
of Mumford curves. This is far from being the sole purpose of uniformization. Other important
consequences are mentioned in Appendix A.3.

II.4.1. The uniformization theorem. In this section, we prove that any analytic Mumford curve
as defined in II.2.24 can be obtained as the quotient of an open dense subspace of P1,an

k by the action
of a Schottky group, leading to a purely analytic proof of Mumford’s theorem. We begin with a few
preparatory results.

Lemma II.4.1. Let L be a compact subset of P1(k). Set O := P1,an
k − L.

(i) Every bounded analytic function on O is constant.
(ii) Every automorphism of O is induced by an element of PGL2(k).

Proof. (i) Let F ∈ O(O). The function F is constant if, and only if, its pullback to O
k̂a

is, hence we
may assume that k is algebraically closed.

Assume, by contradiction, that F is not constant. Then, there exists x ∈ O and a branch b at x
such that F (x) 6= 0 and |F | is monomial at x along b with a positive integer exponent. We may
assume that x is of type 2 or 3. Then, there exists y ∈ O − {x} and N ∈ N>1 such that, for each
z ∈ [x, y], we have |F (z)| = |F (x)| `([x, z])N .

Let us now consider a path [x, y], with y ∈ P1,an
k , with the following property: for each z ∈ (x, y),

|F | is monomial at z with positive integer slope along the branch in (x, y) going away from x. By
Zorn’s lemma, we may find a maximal path [x, y] among those.

We claim that y is of type 1. If y is of type 4, then, by Theorem I.9.10, |F | is constant in the
neighborhood of y in (x, y), and we get a contradiction. Assume that b is of type 2 or 3. Then,
the exponent of |F | at y along the branch corresponding to [y, x] is negative. By Corollary I.9.12,
there exists a branch b at y such that |F | is monomial with positive exponent at y along b, which
contradicts the maximality. Finally, y is of type 1.

By assumption, |F | has a positive integer exponent everywhere on (x, y). It follows that, for
each z ∈ (x, y), we have |F (z)| > |F (x)| `([x, z]). Since y is of type 1, by Lemma I.8.12, we have
`([x, y]) =∞, hence F is unbounded. This is a contradiction.

(ii) Let σ be an automorphism of O.
Let us first assume that O contains at least 2 k-rational points. Up to changing coordinates, we

may assume that 0,∞ ∈ O. Let us choose an automorphism τ ∈ PGL2(k) that agrees with σ on 0
and∞. Then τ−1 ◦σ is an automorphism of O that fixes 0 and∞. In particular, it corresponds to an
analytic function with a zero of order 1 at 0 and a pole of order 1 at ∞. Let us consider the quotient
analytic function ϕ := (τ−1 ◦ σ)/id. There exist a neighborhood U of 0 and a neighborhood V of ∞
on which ϕ is bounded. Since τ−1 ◦ σ is an automorphism, it sends V to a neighborhood of ∞,
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hence it is bounded on O− V . It follows that ϕ is bounded on O− (U ∪ V ), hence on O. By (i), we
deduce that ϕ is constant, and the result follows.

Let us now handle the case where O ∩ P1(k) = ∅. There exists a finite extension K of k such that
OK contains a K-rational point. Applying the previous argument after extending the scalars to K,
we deduce that σ ∈ PGL2(K). Since σ preserves P1(k), it actually belongs to PGL2(k). �

Lemma II.4.2. Let Y be a connected k-analytic A1-like curve of genus 0. Let T = (S,A,D) be a
triangulation of Y . Assume that A is non-empty and consists of annuli. Let U be an open relatively
compact subset of ΣT . Then, there exists an embedding of τ−1

T (U) into P1,an
k such that the complement

of τ−1
T (U) is a disjoint union of finitely many closed discs.

Proof. Recall that ΣT is a locally finite graph (see Theorem II.2.2). As a consequence, the bound-
ary ∂U of U in ΣT is finite. For each z ∈ ∂U , let Iz be an open interval in ΣT having z as an
end-point. Up to shrinking the Iz’s, we may assume that they are disjoint.

Let z ∈ ∂U . Set Az := τ−1
T (Iz). Since every element of A is an annulus, up to shrinking Iz (so

that it contains no points of S), we may assume that Az is an annulus. The open annulus Az may
be embedded into an open disc Dz such that the complement is a closed disc.

Let us construct a curve Y ′ by starting from τ−1
T (U) an gluing Dz along Az for each z ∈ ∂U . By

construction, the curve Y ′ is compact and of genus 0. Moreover, it contains rational points, as the Dz

do. It follows from Theorems II.2.12 and II.2.23 that Y ′ is isomorphic to P1,an
k . By construction,

P1,an
k − τ−1

T (U) =
⋃
z∈∂U

Dz −Az

is a disjoint union of finitely many closed discs. �

We now state and prove the uniformization theorem.

Theorem II.4.3. Let X be a k-analytic Mumford curve. Then the fundamental group Γ of X is a
Schottky group. If we denote by L the limit set of Γ, then O := P1,an

k − L is a universal cover of X.
In particular, we have X ' Γ\O.

Proof. Assume that the genus of X is bigger than or equal to 2.
Let p : Y → X be the topological universal cover of X. Since p is a local homeomorphism, we

may use it to endow Y with a k-analytic structure. The set Y then becomes an A1-like curve and
the map p becomes a local isomorphism of locally ringed spaces. Note that the curve Y has genus 0.

We claim that it is enough to prove that Y is isomorphic to an open subset of P1,an
k whose

complement lies in P1(k). Indeed, in this case, Y is simply connected, hence the fundamental group Γ
of X may be identified with the group of deck transformations of p. By Lemma II.4.1, it embeds
into PGL2(k). It now follows from the properties of the universal cover and the fundamental group
that Γ is a Schottky group (see Remark II.1.12 for the fact that the non-trivial elements of Γ are
loxodromic). Moreover, by Theorem II.3.18, we have Y ⊆ P1,an

k − L, where L is the limit set of Γ,
hence X = Γ\Y ⊂ Γ\(P1,an

k − L). Since Γ\Y and Γ\(P1,an
k − L) are both connected proper curves,

they have to be equal, hence Y = P1,an
k − L.

In the rest of the proof, we show that Y embeds into P1,an
k with a complement in P1(k). Since X

is a k-analytic Mumford curve of genus at least 2, it has a minimal skeleton ΣX and the connected
components of ΣX deprived of its branch points are skeleta of open annuli over k. Its preimage
p−1(ΣX) coincides with the minimal skeleton ΣY of Y . Similarly, the connected components of ΣY

deprived of its branch points are skeleta of open annuli over k. We denote by τY : Y → ΣY the
canonical retraction.
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Let x0 ∈ X and y0 ∈ p−1(x0). Let `X be a loop in ΣX based at x0 that is not homotopic to 0. It
lifts to a path in ΣY between y0 and a point y1 of p−1(x0). We may then lift again `X to a path
in ΣY between y1 and a point y2 of p−1(x0). Repeating the procedure, we obtain a non-relatively
compact path λ(`X) in ΣY starting at y0. Note that the length of λ(`X) is infinite since it contains
infinitely many copies of `X .

More generally, all the maximal paths starting from y0 in ΣY are of infinite length, since they
contain infinitely many lifts of loops from ΣX .

Since X is of genus at least 2, we may find two loops `X,0 and `X,1 based at x0 in ΓX that are
not homotopic to 0 and not homotopic one to the other. Set `0 := λ(`X,0), `∞ := λ(`−1

X,0) and
`1 := λ(`X,1). Away from some compact set of Y , the three paths `0, `∞, `1 are disjoint. Up to
moving x0 and y0, we may assume that

`0 ∩ `1 = `∞ ∩ `1 = `0 ∩ `∞ = {y0}.
For i ∈ {0, 1,∞} and r ∈ R>1, we denote by ξi,r the unique point of `i such that `([y0, ξi,r]) = r.

Let n ∈ N>1. Set

Un := {z ∈ ΣY : `([y0, z]) < 2n} and Yn := τ−1
Y (Un).

We already saw that all the maximal paths starting from y0 in ΣY are of infinite length, hence Un is
relatively compact in ΣY . Denote by ∂Un the boundary of Un in ΣY . For each z ∈ ∂Un, we have
`([y0, z]) = 2n.

By Lemma II.4.2, there exists an open subset On of P1,an
k and an isomorphism ϕn : Yn

∼−→ On such
that P1,an

k −On is a disjoint union of closed discs. For each z ∈ ∂Un, we denote by pz the end-point
of ϕn([y0, z)) in P1,an

k −On and by Dz the connected component of P1,an
k −On whose boundary point

is pz. To ease the notation, for i ∈ {0, 1,∞}, we set Di,n := Dξi,2n .
Let us fix a (k-rational) point at infinity on P1,an

k and a coordinate T on A1,an
k ⊂ P1,an

k . We may
assume that, for each i ∈ {0, 1,∞}, we have i ∈ Di,n. By pulling-back the analytic function T on On
by ϕn, we get a analytic function on Yn. We denote it by ψn. Recall that it is actually equivalent to
give oneself ϕn or ψn, see Lemma I.4.11.

Lemma II.4.4. We have ϕn(y0) = η1. For each r ∈ [1, 2n), we have

ϕn(ξ0,r) = η1/r, ϕn(ξ∞,r) = ηr and ϕn(ξ1,r) = η1,1/r.

Let C be a connected component C of Y − (`0 ∪ `∞). For each y ∈ C ∩ Yn, we have

|ψn(y)| =
{

1/r if the boundary point of C is ξ0,r;

r if the boundary point of C is ξ∞,r.

Let N ∈ J1, nK. The image ϕn(YN ) is an open Swiss cheese. More precisely, there exist d ∈ N>2,
α2, . . . , αd ∈ k∗ and, for each j ∈ J2, dK, rj ∈ [2−N , |αj |) such that ϕn(YN ) is the subset of A1,an

k
defined by the following conditions:

2−N < |T | < 2N ;

|T − 1| > 2−N ;

∀j ∈ J2, dK, |T − αj | > rj .

Proof. It follows from the construction that, for each i ∈ {0, 1,∞}, ϕn([y0, ξi,2n) is an injective path
joining ϕn(y0) to the boundary point of a disc centered at i. Since those paths only meet at ϕn(y0),
the only possibility is that ϕn(y0) = {η1}.

Let r ∈ [1, 2n). Since lengths are preserved by automorphism (see Proposition I.4.14), for each
i ∈ {0, 1,∞}, we have `([η1, ϕn(ξi,r)]) = r. Since ϕn(ξ∞,r) belongs to [η1,∞], it follows that
ϕn(ξ∞,r) = ηr. By a similar argument, we have ϕn(ξ0,r) = η1/r and ϕn(ξ1,r) = η1,1/r.
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Recall that we have I0 = {ηr : r ∈ R>0} ⊂ A1,an
k . Let C be a connected component of A1,an

k − I0

and let ηr be its boundary point. Then, for each z ∈ C, we have |T (z)| = r.
We have ϕ−1

n (I0 ∩ On) = (`0 ∪ `∞) ∩ Yn. By definition of ψn, for each y ∈ Yn, we have
|ψn(y)| = |T (ϕn(y))|. It follows that, for each connected component C of Y − (`0 ∪ `∞) and each
y ∈ C ∩ Yn, we have

|ψn(y)| =
{

1/r if the boundary point of C is ξ0,r;

r if the boundary point of C is ξ∞,r.

The set On is an open Swiss cheese. The set ϕn(UN ) is a connected open subset of its skeleton and
ϕn(YN ) is the preimage of it by the retraction. It follows that ϕn(YN ) is an open Swiss cheese too,
hence the complement in P1,an

k of finitely many closed discs E∞, E0, . . . , Ed. Let z∞, z0, . . . , zd denote
the corresponding boundary points. The set ϕn(YN ) contains ϕn(y0) = η1 and, by construction
of YN , for each i ∈ {∞} ∪ J0, dK, we have `([η1, zi]) = 2N .

Since 0, 1 and ∞ do not belong to On, some of those discs Ei contain those points. Since ϕn(YN )
contains η1, those discs are disjoint. We may assume that, for each i ∈ {0, 1,∞}, we have i ∈ Ei.
The length property then implies that we have z∞ = η2N , z0 = η2−N and z0 = η1,2−N . In other
words,

P1,an
k − (E∞ ∪ E0 ∪ E1) = {x ∈ A1,an

k : 2−N < |T (x)| < 2N , |T − 1| > 2−N}.

For j ∈ J2, dK, let αj be a k-rational point of Ej . The boundary point zj of Ej is then of the
form ηαj ,rj for some rj ∈ R>0. Since Ej does not contain 0, we have rj < |αj |. Moreover, the
condition `([η1, ηαj ,rj ]) = 2N implies that rj > 2−N (see Example I.8.11). The result follows. �

Let N,n,m ∈ N>1 with n > m > N . The analytic function ψm has no zeros on Ym, hence the
quotient ψn|Ym/(ψm) defines an analytic function on Ym. Set

hn,m :=
ψn|Ym
ψm

− 1 ∈ O(Ym).

Lemma II.4.5. For N,n,m ∈ N>1 with n > m > N , we have ‖hn,m‖YN 6 max(2N−m, 2−m/2).

Proof. By Lemma II.4.4, for each y ∈ Ym, we have |ψn(y)| = |ψm(y)|. It follows that ‖hm,n‖Ym 6 1.
We now distinguish two cases.

• Assume that |hn,m| is not constant on YN .
By Corollary I.9.16, there exists y ∈ ∂YN such that ‖hn,m‖YN = |hn,m(y)| and |hn,m| has a negative

exponent at y along the branch entering YN . By harmonicity (see Theorem I.9.14), there exist a
branch b at y not belonging to YN such that the exponent of |hn,m| along b is positive. Repeating
the procedure, we construct a path joining y to a boundary point y′ of Ym such that |hn,m| has a
positive exponent at each point of [y, y′) along the branch pointing towards y′. It follows that we
have

‖hn,m‖Yn > |hn,m(y)| `([y, y′]) > ‖hn,m‖YN 2m−N ,

hence

‖hn,m‖YN 6 2N−m.

• Assume that |hn,m| is constant on YN .
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Let N ′ be the maximum integer smaller than or equal to m such that |hn,m| is constant on YN ′ .
Then, for every r ∈ [1, 2N

′
), we have |hn,m(ξ1,r)| = ‖hn,m‖YN′ . We also have

|hn,m(ξ1,r)| =
|(ψn − ψm)(ξ1,r)|
|ψm(ξ1,r)|

=
|(ψn − ψm)(ξ1,r)|
|T (η1,1/r)|

6 max(|(ψn − 1)(ξ1,r)|, |(ψm − 1)(ξ1,r)|)
6 |(T − 1)(η1,1/r)|

6
1

r
.

We deduce that ‖hn,m‖YN′ 6 2−N
′ .

If N ′ < m, it follows from the previous case that we have ‖hn,m‖YN′ 6 2N
′−m.

In any case, we have
‖hn,m‖YN 6 2−m/2.

�

It follows from Lemma II.4.5 that the sequence (ψn)n>N converges uniformly on YN . Let ψ(N) be
its limit. It is an analytic function on YN .

The functions ψ(N) are compatible, by uniqueness of the limit, which gives rise to an analytic
function ψ ∈ O(Y ). By Lemma I.4.11, there exists a unique analytic morphism ϕ : Y → A1,an

k such
that the pull-back of T by ϕ is ψ.

Let N ∈ N>1. By Lemma II.4.5, there exists m > N such that, for each n > m, we have
‖hn,m‖YN 6 2−2N . (For instance, one could choose m = 4N .) By Lemma II.4.4, we have ‖ψm‖YN =
‖T‖ϕm(YN ) = 2N . It follows that ‖ψn − ψm‖YN 6 ‖ψm‖YN ‖hn,m‖YN 6 2−N . By passing to the limit
over n, we deduce that

‖ψ − ψm‖YN 6 2−N .

Lemma II.4.6. We have ϕ(YN ) = ϕm(YN ) and ϕ|YN is an isomorphism onto its image.

Proof. By Lemma II.4.4, there exist d ∈ N>2, α2, . . . , αd ∈ k∗ and, for each j ∈ J2, dK, rj ∈ [2−N , |αj |)
such that ϕm(YN ) is the subset of A1,an

k defined by
2−N < |T | < 2N ;

|T − 1| > 2−N ;

∀j ∈ J2, dK, |T − αj | > rj .

For t ∈ (1, 2N ), let Wt be the subset of A1,an
k defined by

2−N t 6 |T | 6 2N t−1;

|T − 1| > 2−N t;

∀j ∈ J2, dK, |T − αj | > rj t.
Each Wt is compact and the family (Wt)t∈(1,2N ) is an exhaustion of ϕm(YN ).

Let n > m. For t ∈ (1, 2N ), the set ϕ−1(Wt) ∩ YN is the subset of points y ∈ YN such that
2−N t 6 |ψ(y)| 6 2N t−1;

|ψ(y)− 1| > 2−N t;

∀j ∈ J2, dK, |ψ(y)− αj | > rj t.
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From the inequality ‖ψ − ψm‖YN 6 2−N , we deduce that ϕ−1(Wt) ∩ YN = ϕ−1
m (Wt) ∩ YN .

It follows that ϕ(YN ) = ϕm(YN ) and that the morphism ϕ|YN : YN → ϕ(YN ) is proper. Since YN
is a smooth curve and ϕ|YN is not constant, it is actually finite.

To prove that ϕ|YN is an isomorphism, it is enough to show that it is of degree 1. We will prove
that, for each r ∈ [1, 2N ), we have ϕ−1

|YN (ξ∞,r) = {ηr}. This implies the result, by Theorem I.9.17.
Let r ∈ [1, 2N ). Let y ∈ YN such that ϕ(y) = ηr. To prove that y = ξ∞,r, we may extend the

scalars to k̂a. The point ηr of A1,an
k is characterized by the following equalities:{

|T (ηr)| = r;

∀α ∈ k̂a with |α| = r, |(T − α)(ηr)| = r.

Since ϕ(y) = ηr, we have {
|ψ(y)| = r;

∀α ∈ k̂a with |α| = r, |ψ(y)− α| = r.

Since ‖ψ−ψm‖YN 6 2−N < r, the same equalities hold with ψm instead of ψ. It follows that ψm(y) =
ηr, hence y = ξ∞,r since ψm is injective. �

It follows from Lemmas II.4.4 and II.4.6 that, for each N ∈ N>1, P1,an
k −ϕ(YN ) is a disjoint union

of closed discs with radii smaller than or equal to 2−N . It follows that

P1,an
k − ϕ(Y ) =

⋂
N>1

P1,an
k − ϕ(YN )

is a compact subset of P1(k) (see the proof of Corollary II.3.13 for details on k-rationality). By
Lemma II.4.6 again, ϕ induces an isomorphism onto its image.

We briefly sketch how the proof needs to be modified to handle the case of genus 0 and 1. One
may use similar arguments but the paths `0, `∞, `1 have to be constructed in a different way. In
genus 0, one first proves that X has rational points and consider paths joining y0 to them. (In this
case, one may also argue more directly to prove that X is isomorphic to P1,an

k by Theorems II.2.12
and II.2.23.) In genus 1, the skeleton provides two paths and we can use a rational point to construct
the third one. Such a point has to exist, since any annulus over k whose skeleton is of large enough
length contains some. �

Remark II.4.7. The most difficult part of the proof of Theorem II.4.3 consists in proving that the
k-analytic curve Y , which is known to be of genus 0, may be embedded into P1,an

k . Contrary to
what happens over the field of complex numbers, this is not automatic. This problem was studied
extensively by Q. Liu under the assumption that k is algebraically closed. He proved that the
answer depends crucially on the maximal completeness of k. If it holds, then any smooth connected
k-analytic curve of finite genus may be embedded into the analytification of an algebraic curve of the
same genus (hence into P1,an

k in the genus 0 case), see [Liu87b, Théorème 3] or [Liu87a, Théorème 3.2].
Otherwise, there exists a smooth connected k-analytic curve of genus 0 with no embedding into P1,an

k ,
see [Liu87b, Proposition 5.5]. Q. Liu also prove several other positive results that hold over an
algebraically closed base field.

The results of Q. Liu are stated and proved in the language of rigid analytic geometry. We believe
that it is worth adapting them to the setting of Berkovich geometry and that this could lead to a
different point of view on the sufficient conditions for algebraizablity. One may also wonder whether
it is necessary to assume that the base field is algebraically closed to obtain an unconditional positive
result. The case of a discretely valued base field (hence maximally complete but not algebraically
closed) is, of course, particularly interesting.
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II.4.2. Automorphisms of Mumford curves. In this section, we use the uniformization of
Mumford curves to study their groups of k-linear automorphisms. The fundamental result, proven
by Mumford in [Mum72a, Corollary 4.12] is the following theorem. We include a proof of this fact
that relies on the topology of Berkovich curves.

Theorem II.4.8. Let X be a k-analytic Mumford curve. Let Γ ⊂ PGL2(k) be its fundamental group,
and let N := NPGL2(k)(Γ) be the normalizer of Γ in PGL2(k). Then, we have

Aut(X) ∼= N/Γ.

Proof. Let p : O → X be the universal cover of X provided by Theorem II.4.3, and let σ ∈ Aut(X).
Since p is locally an isomorphism of k-analytic curves, the automorphism σ can be lifted to an
analytic automorphism σ̃ ∈ Aut(O) such that p ◦ σ̃ = σ ◦ p. By Lemma II.4.1, σ̃ extends uniquely to
an automorphism of P1,an

k , that is, an element τ ∈ PGL2(k). The automorphism τ has to normalize Γ:
in fact, for any γ ∈ Γ, the element τγτ−1 ∈ Aut(O) induces the automorphism σσ−1 = id on X. It
follows that τγτ−1 ∈ Γ, so that τ ∈ N .

Conversely, let τ ∈ N . By definition, the limit set L of Γ is preserved by τ . It follows that τ
induces an automorphism of O = P1,an

k − L. Moreover, for each γ ∈ Γ and each x ∈ P1,an
k , we have

τ(γ(x)) = (τγτ−1)(τ(x)) ∈ Γ · τ(x).

It follows that τ descends to an automorphism of X ' Γ\O. �

As it was the case for the uniformization, Mumford’s proof relies on non-trivial results in formal
geometry. The Berkovich analytic proof turns out to be shorter and much less technical due to the
fact that the uniformization of a Mumford curve can be interpreted as a universal cover of analytic
spaces.

Recall from Remark II.2.8 that the skeleton ΣX of the Mumford curve X is a finite metric graph.
We will denote by Aut(ΣX) the group of isometric automorphisms of ΣX . An interesting feature
of the automorphism group of an analytic curve that is immediate in the Berkovich setting, is the
existence of a restriction homomorphism

ρ : Aut(X) −→ Aut(ΣX)
σ 7−→ σ|ΣX .

Proposition II.4.9. Let X be a Mumford curve of genus at least 2. Then, the restriction homo-
morphism ρ : Aut(X)→ Aut(ΣX) is injective.

Proof. Let σ ∈ Aut(X) such that ρ(σ) = id, that is, σ acts trivially on the skeleton ΣX . Then, as in
the proof of Theorem II.4.8 one can lift σ to an automorphism of the universal cover p : O −→ X.
By possibly composing this lifting with an element of the Schottky group, we can find a lifting σ̃
that fixes a point x in the preimage p−1(ΣX) ⊂ O. Since σ fixes ΣX pointwise, then σ̃ fixes the
fundamental domain in p−1(ΣX) by the action of the Schottky group ΓX containing x. By continuity
of the action of ΓX on p−1(ΣX), the automorphism σ̃ has to fix the whole p−1(ΣX) pointwise. But
then the corresponding element τ ∈ PGL2(k) obtained by extending σ̃ thanks to Lemma II.4.1(ii)
has to fix the limit set of ΓX , which is infinite when g(X) ≥ 2. It follows that τ is the identity of
PGL2(k), hence that σ is the identify automorphism. �

Remark II.4.10. The previous proposition can be proved also using algebraic methods as follows. The
fact that g(X) ≥ 2 implies that Aut(X) is a finite group. Then, for every σ ∈ Aut(X), Y := X/〈σ〉
makes sense as a k-analytic curve, and the quotient map fσ : X → Y is a ramified covering. Let us
now suppose that ρ(σ) = id. Then Y contains an isometric image of the graph ΣX , whose cyclomatic
number is g(X), by Corollary II.2.29. It follows from the definition of the genus that g(Y ) > g(X).
We can now apply Riemann-Hurwitz formula to find that

2g(X)− 2 = deg(fσ)(2g(Y )− 2) +R,
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where R is a positive quantity. Since g(Y ) > g(X) ≥ 2, we deduce that deg(fσ) = 1, hence σ = id.

The proposition shows that Aut(ΣX) controls Aut(X), but it is a very coarse bound when the
genus is high. Much better bounds are known, as one can see in the examples below and in the first
part of Appendix A.3, containing an outline of further results about automorphisms of Mumford
curves, including the case of positive characteristic.

Example II.4.11. Let X be a Mumford curve such that Aut(ΣX) = {1}. Then Proposition II.4.9
ensures that X has no non-trivial automorphisms as well. Since up to replacing k with a suitable
field extension every stable metric graph can be realized as the skeleton of a Mumford curve, one can
build in this way plenty of examples of Mumford curves without automorphisms. For example, the
graph of genus 3 in Figure 9 below has a trivial automorphism group, as long as the edge lengths
are generic enough, for example when all lengths are different.

v1

v2 v3

Figure 9. The metric graph ΣX has trivial group of automorphisms if the edge
lengths are all different.

This graph can be obtained by pairwise identifying the ends of a tree as in Figure 10.

p−1(v1)

p−1(v2) p−1(v3)

Figure 10. The graph in the previous figure is obtained from its universal covering
tree by pairwise gluing the ends of the finite sub-tree ΣF . The gluing is made by
identifying the ends that are marked with the same shape.

One can realize this tree inside P1,an
k as the skeleton of a fundamental domain under the action of

a Schottky group in many ways. As an example, if k = Qp with p ≥ 5, a suitable Schottky group is
obtained by carefully choosing the Koebe coordinates that give rise to the desired skeleton. One
can for instance pick Γ = 〈M(0,∞, p3),M(1, 2, p4),M(p, p− 2, p3)〉 and verify that it gives rise to a
fundamental domain whose skeleton is the tree in Figure 10. As a consequence of Theorem II.4.8,
the normalizer of Γ in PGL2(k) is the group Γ itself.
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Example II.4.12. Assume that k is algebraically closed and that its residue characteristic is different
from 2 and 3. Let π, ρ be elements of k satisfying |π| < 1, ρ3 = 1 and ρ 6= 1. Fix the following
elements of PGL2(k):

a =

[
−π 0
−2 π

]
, b =

[
1 + π − ρ (1 + π)(ρ− 1)

1− ρ (1 + π)ρ− 1

]
.

These elements are of finite order, respectively two and three. The fixed rigid points of a are 0 and
π, while the fixed rigid points of b are 1 and 1 + π.

Thanks to our assumption that char(k̃) 6= 2, the transformation a acting on P1,an
k fixes the path

joining 0 and π, and sends every open disc whose boundary point lies on this path to a disjoint open
disc with the same boundary point. For example, the image by a of the disc D−(− π

π−2 , 1) is the
disc4 P1,an

k −D+
(
0, |π|

)
, and vice versa.

The same happens for the action of b: the path joining 1 and 1 + π is fixed, while any open disc
with its boundary point on this path is sent to a disjoint open disc with the same boundary point.
Since b is of order three, the orbit of such a disc consists of three disjoint discs. For example, the orbit
of D−(0, 1) contains b

(
D−(0, 1)

)
= D−

(
1− π

(1+π)ρ−1 , 1
)
and b2

(
D−(0, 1)

)
= D−

(
1− π

(1+π)ρ2−1
, 1
)
.

Let us consider the elements γ1 := abab2 and γ2 := ab2ab. Using the geometry of a and b described
above, one can check that the 4-tuple

(
D+(γ1), D+(γ−1

1 ), D+(γ2), D+(γ−1
2 )
)
represented in Figure 11

provides a Schottky figure adapted to (γ1, γ2).

0

γ−1
1 (π)

γ−1
1 (0)

γ−1
2 (0)

γ−1
2 (π)

π

1

1 + π
− π
π−2

γ2(1)

γ2(1 + π)

γ1(1)

γ1(1 + π)

x1 x2

D+(γ2)

D+(γ1)

D+(γ−1
2 )

D+(γ−1
1 )

Figure 11. The Schottky figure associated with (γ1, γ2)

Thanks to Proposition II.3.24, the existence of a Schottky figure ensures that Γ = 〈γ1, γ2〉
is a Schottky group of rank 2. Denote its limit set by L. By Theorem II.3.18, the quotient
X := Γ\(P1,an

k − L) makes sense as a k-analytic space and it is a Mumford curve of genus 2. Let
p : (P1,an

k − L) → X denote the universal cover. It also follows from Theorem II.3.18 that the
topology of X may be described quite explicitly from the action of Γ. We deduce in this way that
the skeleton ΣX of X is the metric graph represented in Figure 12. By measuring the lengths of the
paths joining the boundaries of the discs in the Schottky figure, one can verify that the three edges
of ΣX have equal lengths.

Let us now compute the automorphism group Aut(X). By Theorem II.4.8, this can be done by
computing the normalizer N of Γ in PGL2(k). The elements a and b lie in N , since γia = aγ−1

i for

4Recall that on the projective line we consider also discs “centered in ∞” such as this one.
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p(x1) p(x2)

Figure 12. The skeleton ΣX of the Mumford curve uniformized by Γ

i = 1, 2 and γ1b = bγ−1
2 , but we can also find elements in N that do not belong to the subgroup

generated by a and b. Let

c :=

[
1 + π −π(1 + π)

2 −(1 + π)

]
∈ PGL2(k).

A direct computation shows that the transformation c is such that c2 = id, cac = a and cbc = b2,
so that c belongs to N . The group N ′ = 〈a, b, c〉 ⊂ PGL2(k) is then contained in N , and the
quotient N ′/Γ is isomorphic to the dihedral group D6 of order 12. In fact, if we call α, β, γ the
respective classes of a, b, c in N ′/Γ, we have that αβ = βα, and then 〈α, β〉 is a cyclic group of
order 6. However, the same computation above shows that γ does not commute with β. The
group D6 is also the automorphism group of the skeleton ΣX , and so, by Proposition II.4.9, we have
N = N ′ and the restriction homomorphism Aut(X)→ Aut(ΣX) is an isomorphism.

Note that one can extract quite a lot of information from the study of the action of N on P1,an
k .

In this example, α ∈ Aut(X) is an order 2 automorphism known as the hyperelliptic involution, since
it induces a degree 2 cover of the projective line ϕ : X → P1,an

k . This last fact can be checked on
the skeleton ΣX by noting that α(p(x1)) = p(x2), and hence α has to switch the ends of every edge
of ΣX . As a result, the quotient X/〈α〉 is a contractible Mumford curve, and hence it is isomorphic
to P1,an

k .
This description of X as a cover of P1,an

k is helpful to compute an explicit equation for the smooth
projective curve whose analytification is X. In fact, a genus 2 curve that is a double cover of the
projective line can be realized as the smooth compactification of a plane curve of equation

y2 =
6∏
i=1

(x− ai),

where the ai ∈ k are the ramification points of the cover, and the involution defining the cover
sends y to −y.

In order to find the ai, we shall first compute the branch locus B ⊂ X of the hyperelliptic cover.
The fixed points of a are 0 and π, so the corresponding points p(0), p(π) are in B. The other branch
points can be obtained by finding those x ∈ P1,an

k (k) satisfying the condition γi(x) = a(x) for i = 1, 2.
We have γ1(b(0)) = abab2b(0) = aba(0) = a(b(0)), and the same applies to b(π), so the images by p
of these two points are also in B. In the same way, we find that γ2(b2(0)) = a(b2(0)) and γ2(b2(π)) =
a(b2(π)). We have found in this way that B = {p(0), p(b(0)), p(b2(0)), p(π), p(b(π)), p(b2(π))}.

To find the ramification locus, we have to compute ϕ(B). Since 〈α〉 is a normal subgroup of
Aut(X), the element β acts as an automorphism of order 3 of X/〈α〉 ∼= P1,an

k . Up to a change of
coordinate of this projective line, we can suppose that the fixed points of β are 0 and ∞, so that
β is the multiplication by a primititve third root of unity, and that the first ramification point is
a1 = ϕ(p(0)) = 1. Then, after possibly reordering them, the remaining ramification points are
a2 = ρ, a3 = ρ2 and a4, ρa4, ρ

2a4, with |a4 − 1| < 1.
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With a bit more effort, we can actually compute the value of a4. To do this, notice that the
function p is injective when restricted to the open fundamental domain

F− = P1,an
k −

(
D+(γ1) ∪D+(γ−1

1 ) ∪D+(γ2) ∪D+(γ−1
2 )
)
.

If we set F ′ = ϕ ◦ p(F−) we then have a two-fold cover F− −→ F ′ ⊂ P1,an
k induced by ϕ ◦ p, which

can be explicitly written as a rational function z 7→ z2

(z−π)2
(this function can be found by looking

at the action of a on F− explicitly). Note that F− contains both the fixed rigid points of b, i.e.
1 + π and 1, and those of a, i.e. 0 and π. When we reparametrize the projective line on the target
of ϕ to get the wanted equation, we are imposing the conditions α ◦ p(1 + π) 7→ ∞, α ◦ p(1) 7→ 0
and α ◦ p(0) 7→ 1 = a1. These choices leave only one possibility for the ramification point a4: it is(

1−π
1+π

)2. We have now found the equation of the plane section of our Mumford curve: it is

y2 = (x3 − 1) ·
(
x3 − (1− π)6

(1 + π)6

)
.

Note that |a4 − a1| =
∣∣∣ (1−π)2

(1+π)2
− 1
∣∣∣ = |π|.

A different example of a hyperelliptic Mumford curve with a similar flavour is discussed in the
expository paper [CK05], accompanied with figures and other applications of automorphisms of
Mumford curves.

Example II.4.13. The curve in Example II.4.12 has the same automorphism group in every
characteristic (different from 2 and 3). However, Mumford curves in positive characteristic have
in general more automorphism than in characteristic 0. An interesting class of examples are the
so-called Artin-Schreier-Mumford curves, first introduced by Subrao in [Sub75]. We sketch here the
main results and refer to [CKK10] for more detailed proofs of these facts. Let p be a prime, q = pe

be a power of p, and k = Fq((t)). Let X be the analytification of the curve defined inside P1
k × P1

k
by the equation

(yq − y)(xq − x) = f(t) with f ∈ tFq[[t]].
This is an ordinary curve in characteristic p > 0 with many automorphisms, and for this reason

has caught the attention of cryptographers and positive characteristic algebraic geometers alike.
One way to study its automorphisms is to observe that X is a Mumford curve. A Schottky group
attached to it can be constructed by fixing an element v ∈ k and looking at the automorphisms of
P1,an
k of the form

au =

[
1 u
0 1

]
, bu =

[
v 0
u v

]
∈ PGL2(k), u ∈ F×q .

These transformations are all of order p, au represent translations by elements of F×q and bu their
conjugates under the inversion z 7→ v

z . The subgroup Γv = 〈a−1
u b−1

u′ aubu′ : (u, u′) ∈ F×q
2〉 of PGL2(k)

is a Schottky group of rank (q − 1)2, and for a certain value of v5 it gives rise to the curve X by
Schottky uniformization. The immediate consequence of this fact, is that X is a Mumford curve of
genus (q − 1)2.

The group of automorphisms Aut(X) is isomorphic to a semi-direct product (Z/pZ)2e oDq−1,
and its action is easy to describe using the equation of the curve: the elementary abelian subgroup
(Z/pZ)2e consists of those automorphisms of the form (x, y) 7→ (x+ α, y + β) with (α, β) ∈ (Fq)2,
while the dihedral subgroup Dq−1 is generated by (x, y) 7→ (y, x) and (x, y) 7→ (γx, γ−1y) for γ ∈ F×q .
We deduce that the order of Aut(X) is 2(q − 1)q2. In characteristic 0, it is not possible to have
these many automorphisms, thanks to bounds by Hurwitz and Herrlich that would give rise to a
contradiction (see Appendix A.3 for the precise statement of these bounds).

5The relationship between v and f(t) is not immediate, and it is the object of the paper [CKK10].
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Appendix A. Further readings

The theory of Berkovich curves has several applications to numerous fields of mathematics, and
uniformization plays a role in many of these. A complete description of these applications goes far
beyond the scope of the present text, but we would like to provide the interested reader with some
hints about the state of the art and where to find more details in the existing literature, as well as
point out which simplifications adopted in this text are actually instances of a much richer theory.

A.1. Berkovich spaces and their skeleta. We provided a short introduction to the theory of
Berkovich curves and their skeleta in Section II.2.2 of this text.

The first discussion of this topic appears already in Chapter 4 of Berkovich’s foundational book
[Ber90]. In this context, the definition of the skeleton of a Berkovich curve X makes use of formal
models and the semi-stable reduction theorem, that states that for the analytification of a smooth
proper and geometrically irreducible algebraic curve over k, there exists a finite Galois extension
K of k such that the base change XK has a semi-stable formal model. Berkovich showed that the
dual graph of the special fiber of any semi-stable formal model embeds in the curve XK and that
it is invariant by the action of the Galois group Gal(K/k) over XK , which allows to define skeleta
of X as quotients of skeleta of XK . This construction is again found in A. Thuillier’s thesis [Thu05],
where it is exploited to define a theory of harmonic functions on Berkovich curves.

A fruitful approach to the study of skeleta has been the one we adopted in Definition II.2.3, via
the use of triangulations. This was first introduced by Ducros in [Duc08] to study étale cohomology
groups of Berkovich curves. In the case where k is algebraically closed, a comprehensive exposition of
skeletons, retractions, and harmonic functions on non-Archimedean curves can be found in the paper
[BPR14]. There, the authors are motivated by connections with tropical geometry, as, for a given
algebraic variety over k, the skeletons of its analytification are tightly related to its tropicalization
maps. Other than in the aforementioned paper, these connections are exposed in [Wer16], where the
higher-dimensional cases are highlighted as well.

As for higher-dimensional spaces, Berkovich introduced skeleta in [Ber99]. They are simplicial
sets onto which the spaces retract by deformation. They are constructed using semi-stable formal
models and generalizations of them, so they are not known to exist in full generality, but Berkovich
nonetheless managed to use them to prove that smooth spaces are locally contractible (hence admits
universal covers).

The connections with tropical geometry have been proven fruitful, among other things, to study
finite covers of Berkovich curves Y → X over k. The general pattern is that these covers are
controlled by combinatorial objects that are enhanced versions of compatible pairs (ΣY ,ΣX) of
skeletons of the curves Y and X. Assume that k is algebraically closed. Whenever the degree of
such a cover is coprime with the residue characteristic of k, the papers [ABBR15a] and [ABBR15b]
give conditions on a pair (ΣY ,ΣX) to lift to a finite morphism of curves Y → X. In the case of
covers of degree divided by the residue characteristic of k, the situation is still far from understood,
but progress has been made thanks to the work of Temkin and his collaborators in the papers
[CTT16, Tem17, BT20]. The main tool used in these works is the different function.

With regard to higher-dimensional varieties, a new approach to skeletons was proposed by
Hrushovski-Loeser [HL16] using techniques coming from model theory. They are able to define
skeleta of analytifications of quasi-projective varieties and deduce the remarkable result that any
such space has the homotopy type of a CW-complex.

In the specific case of curves over an algebraically closed base field, the paper [CKP18] uses
triangulations in order to give a more concrete model-theoretic version of Berkovich curves (and
morphisms between them). In particular, the authors manage to give an explicit description of
definable subsets of curves and prove some tameness properties.
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Without the assumption that k is algebraically closed, or rather that X has a semi-stable formal
model over the valuation ring of k, the structure of analytic curves is much harder to grasp, due
among other things to the difficulty of classifying virtual discs and virtual annuli. The curious reader
will find much food for thought in the book by Ducros [Duc], which can nevertheless be of difficult
reading for a first approach. If k is a discrete valuation field, a generalization of potential theory
on Berkovich curves is provided in [BN16] thanks to a careful study of regular models, and the
introduction of the notion of weight function. In regard to the problem of determining a minimal
extension necessary for the existence of a semi-stable model, an approach via triangulations has been
recently proposed in [FT19].

Finally, let us mention that we choose to introduce Berkovich curves as A1-like curves because we
are convinced that this is a natural framework for studying uniformization, but the general theory is
much richer, and contains many examples of Berkovich curves that are not A1-like.

A.2. Non-Archimedean uniformization in arithmetic geometry. In the case of curves over
the field of complex numbers, Schottky uniformization can be seen in the context of the classical
uniformization theorem for Riemann surfaces, proven independently by Koebe and Poincaré in 1907.
This states that every simply connected complex analytic curve X is conformally equivalent to the
complex projective line, the complex affine line, or the Poincaré upper-half plane. As a consequence,
the universal covering space of X is also one of these, and when X is compact, Koebe-Poincaré
uniformization factors through the Schottky uniformization

(
P1,an
C − L

)
→ X. A remarkable book

on complex uniformization [dSG10] has been written by the group of mathematicians known under
the collective name of Henri Paul de Saint-Gervais. It constitutes an excellent reference both on the
historical and mathematical aspects of the subject.

In the non-Archimedean case, the history of uniformization is much more recent. The uniformiza-
tion theory of elliptic curves over a non-Archimedean field (k, | · |) was the main motivation underlying
J. Tate’s introduction of rigid analytic geometry in the 1960s. Using his novel approach, Tate proved
that every elliptic curve with split multiplicative reduction over k is analytically isomorphic to the
multiplicative group k×/qZ for some q in k with 0 < |q| < 1. Tate’s computations were known to
experts, but remained unpublished until 1995, when they were presented in [Tat95] together with
a discussion on further aspects of this theory, including automorphic functions, a classification of
isogenies of Tate curves, and a brief mention of how to construct “universal” Tate curves over the
ring Z[[q]][q−1] using formal geometry. These formal curves appeared for the first time in the paper
[DR73] by P. Deligne and M. Rapoport, who attributed it to M. Raynaud and called them generalized
elliptic curves. In loc. cit. the authors exploited them to give a moduli-theoretic interpretation at
the cusps of the modular curves X0(Np) with p - N . Further reading in this direction include the
foundational paper [KM85], that concerns the case of modular curves X(Npn) and [Con07], that
provides a more contemporary perspective on generalized elliptic curves.

Interpreting the Schottky uniformization of Mumford curves of [Mum72a] as a higher genus
generalization of Tate’s theory, inspired several novel arithmetic discoveries. One of the most
important is the uniformization of Shimura curves, fundamental objects in arithmetic geometry that
vastly generalize modular curves. In [Che76], I. Cherednik considered a Shimura curve C associated
with a quaternion algebra B over Q. For a prime p where B is ramified, he proved that the p-adic
analytic curve (C×QQp)

an can be obtained as a quotient of Drinfeld p-adic halfplane P1,an
Qp −P

1,an
k (Qp),

by the action of a Schottky group. This Schottky group can be as a subgroup of a different quaternion
algebra B′ over Q, constructed explicitly from B via a procedure known as interchange of invariants.
The theory obtained in this way is classically referred to as Cherednik-Drinfeld uniformization, since
V. Drinfeld gave a different proof of this result in [Dri76], building on a description of C as a moduli
space of certain abelian varieties. The excellent paper [BC91] provides a detailed account of these
constructions.
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By generalizing Drinfeld’s modular interpretation, the approach can be extended to some higher
dimensional Shimura varieties, resulting in their description as quotients of the Drinfeld upper-half
space via a uniformization map introduced independently by G. Mustafin [Mus78] and A. Kurihara
[Kur80]. For a firsthand account of the development of this uniformization, we refer the reader to
the book [RZ96] by M. Rapoport and T. Zink.

Non-Archimedean uniformization of Shimura varieties has remarkable consequences. First of all,
it makes possible to find and describe integral models of Shimura varieties, since the property of
being uniformizable imposes restrictions on the special fibers of such models. Furthermore, it gives a
way to compute étale and `-adic cohomology groups, as well as the action of the absolute Galois
group Gal(Qp/Qp) on these, making it a powerful tool for studying Galois representations. All the
aforementioned results were shown in the framework of formal and rigid geometry. However, more
contemporary approaches to uniformization of Shimura varieties and Rapoport-Zink spaces make use
of Berkovich spaces (see [Var98, JLV03]), or Huber adic geometry in the form of perfectoid spaces
(see [SW13] and [Car19]). In particular, the perfectoid approach can be used to vastly generalize
the uniformization of Shimura varieties and establish a theory of local Shimura varieties. This
construction is exposed in the lecture notes [SW20] by P. Scholze and J. Weinstein.

Local and global uniformization of Shimura varieties are investigated in relation to period mappings,
Gauss-Manin connections, and uniformizing differential equations in the book by Y.André [And03],
where striking similarities between the complex and p-adic cases are highlighted. For more results
about the relevance of Shimura varieties, not necessarily with regard to uniformization, we refer to
[Mil05].

Finally, let us mention that Tate’s uniformization of elliptic curves with split multiplicative
reduction generalizes to abelian varieties. This is also a result of Mumford, contained in the paper
[Mum72b], that can be regarded as a sequel to [Mum72a], since the underlying ideas are very similar.
In this case, the uniformization theorem is formulated by stating that a totally degenerate abelian
variety of dimension g over k is isomorphic to the quotient of the analytic torus (Gg

m,k)
an by the

action of a torsion free subgroup of (k×)g. This applies in particular to Jacobians of Mumford curves,
a case surveyed in detail in the monograph [Lüt16]. We shall remark that Mumford’s constructions
are more general than their presentation in this text: they work not only over non-Archimedean
fields, but more generally over fields of fractions of complete integrally closed noetherian rings of any
dimension.

A.3. The relevance of Mumford curves. The uniformization theorem in the complex setting
is a very powerful tool, and one of the main sources of analytic methods applied to the study of
algebraic curves. This leads to the expectation that, in the non-Archimedean setting, Mumford
curves can be more easily studied, turning out to be a good source of examples for testing certain
conjectures. This is indeed the case for several topics in algebraic curves and their applications, as
we could already sample in Section II.4.2 on the subject of computing the group of automorphisms
of curves.

This appendix is a good place to remark that Examples II.4.12 and II.4.13 in that section are
instances of a much deeper theory. For a smooth projective algebraic curve C of genus g ≥ 2 over
a field of characteristic zero, the Hurwitz bound ensures that the finite group of automorphisms
Aut(C) is of order at most 84(g − 1). This bound is sharp: there exist curves of arbitrarily high
genus whose automorphism groups attain it, the so-called Hurwitz curves. However, if we know that
C is (the algebraization of) a Mumford curve, F. Herrlich proved a better bound in [Her80]. Namely,
if we denote by p the residue characteristic of K, he showed that:
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|Aut(C)| ≤


48(g − 1) p = 2

24(g − 1) p = 3

30(g − 1) p = 5

12(g − 1) otherwise.
This result relies on the characterization of automorphism groups of Mumford curves as quotients
N/Γ, where Γ is a Schottky group associated with C and N its normalizer in PGL2(K) (see Theorem
II.4.8). One can show that the group N acts discontinuously on an infinite tree that contains the
universal covering tree of the skeleton ΣCan , and use Serre’s theory of groups acting on trees to
prove that N is an amalgam of finite groups. In his paper, Herrlich achieves the bounds above by
classifying those amalgams that contain a Schottky group as a normal subgroup of finite index.

Over a field of characteristic p > 0, the Hurwitz bound is replaced by the Stichtenoth bound,
stating that |Aut(C)| ≤ 16g4, unless C is isomorphic to a Hermitian curve. When C is a Mumford
curve, this bound can be improved in principle using Herrlich’s strategy. However, this is not an easy
task, as one has to overcome the much bigger difficulties that arise in positive characteristic. This
has been achieved recently by M. Van der Put and H. Voskuil, who prove in [VvdP19, Theorem 8.7]
that |Aut(C)| < max{12(g − 1), g

√
8g + 1 + 3} except for three occurrences of (isomorphism classes

of) X, which happen when p = 3 and g = 6. Moreover, in [VvdP19, Theorem 7.1] they show that
the bound is achieved for any choice of the characteristic p > 0. The bound corrects and extends a
bound given by G. Cornelissen, F. Kato and A. Kontogeorgis in [CKK01].

Another application of uniformization of Mumford curves is the resolution of non-singularities
for hyperbolic curves6 over Qp. Given such a curve X, and a smooth point P of the special fiber
of a semi-stable model of X, it is an open problem to find a finite étale cover Y −→ X such that
a whole irreducible component of the special fiber of the stable model of Y lies above P . Earlier
versions of this problem were introduced and proved by S. Mochizuki [Moc96] and A. Tamagawa
[Tam04], that showed connections with important problems in anabelian geometry. The interest of
the version proposed here is also motivated by anabelian geometry: F. Pop and J. Stix proved in
[PS17] that any curve for which resolution of non-singularities holds satisfies also a valuative version
of Grothendieck’s section conjecture. In the paper [Lep13], E. Lepage uses Schottky uniformization
in a Berkovich setting to show that resolution of non-singularities holds when X is a hyperbolic
Mumford curve. His approach consists in studying µpn-torsors of the universal cover of X, which
are better understood since they can be studied using logarithmic differentials of rational functions.
With this technique, he can show that there is a dense subset of type 2 points V ∈ X, with the
following property: every x ∈ V can be associated with a µpn-torsor τ : Y → X such that τ−1(x) is
a point of positive genus. This last condition ensures that the corresponding residue curve is an
irreducible component of the stable model of Y .

Mumford curves have been also proven useful in purely analytic contexts, for instance to study
potential theory and differential forms. Using the fact that all type 2 points in a Mumford curve
are of genus 0, P. Jell and V. Wanner [JW18] are able to establish a result of Poincaré duality and
compute the Betti numbers of the tropical Dolbeaut cohomology arising from the theory of bi-graded
real valued differential forms developed in [CLD12].

Finally, let us mention that archimedean and non-archimedean Schottky uniformizations can
be studied in a unified framework thanks to work of the authors [PT], where a moduli space Sg
parametrizing Schottky groups of fixed rank g over all possible valued fields is constructed for every
g ≥ 2. This construction is performed in the framework of Berkovich spaces over Z developed
in [Poi10, Poi13, LP]. More precisely, the space Sg is realized as an open, path-connected subspace
of A3g−3,an

Z , it is endowed with a natural action of the group Out(Fg) of outer automorphisms of the

6A hyperbolic curve in this context is a genus g curve with n marked points satisfying the inequality 2g− 2+n > 0.
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free group, and exhibits interesting connections with other constructions of moduli spaces, in the
frameworks of tropical geometry and geometric group theory. The space Sg seems to be ideal to
study phenomena of degeneration of Schottky groups from archimedean to non-archimedean.

A different take on the interplay between archimedean and non-archimedean Schottky uniformiza-
tions is provided by Y. Manin’s approach to Arakelov geometry. In the paper [Man91] several
formulas for computing the Green function on a Riemann surface using Schottky uniformization and
are explicitly inspired by Mumford’s construction. These formulas involve the geodesics lengths in the
hyperbolic handlebody uniformized by the Schottky group associated with such a surface, suggesting
connections between hyperbolic geometry and non-archimedean analytic geometry. This result has
been reinterpreted in term of noncommutative geometry by C. Consani and M. Marcolli [CM04] by
replacing the Riemann surface with a noncommutative space that encodes certain properties of the
archimedean Schottky uniformization. This noncommutative formalism has led to applications both
in the non-archimedean world (see for example [CM03]) and in the archimedean one, for instance to
Riemannian geometry in [CM08]. We think that the theory of Berkovich spaces could fit nicely in this
picture, and it would be an interesting project to investigate the relations between noncommutative
geometric objects related to Schottky uniformization (e.g. graph C?-algebras) and Mumford curves
in the Berkovich setting.
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