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Abstract

We deal with locally free OX -modules F with connection over a Berkovich curve X. As
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Introduction

In this paper we prove the finite dimensionality of the de Rham cohomology of a large class of p-adic
differential equations over Berkovich curves. Moreover, we obtain a global index formula relating
the index of the differential equation to its global irregularity, that we define in term of the slopes
of the global radii of convergence of the equation as defined in [Bal10], [Ked13], [Pul12], [PP12],
[PP13].

Major contribution to the finiteness of the de Rham cohomology in this context are [Ado76],
[Dwo82], [CM93], [CM97], [CM00], [CM01], [Rob75], [Rob76], [Rob84], [Rob85]. For references con-
cerning rigid cohomology related to the present paper we refer to the introduction of [Ked06], and
related bibliography.

As firstly observed by Bernard Dwork (cf. [Dwo82]), and largely exploited by Philippe Robba (cf.
[Rob84]), the major tool for the study of p-adic differential equations is the radius of convergence
of the differential equation. One of the crucial contributions of Robba has been to relate the index
of a p-adic differential operator with rational coefficients to the slopes of the radius of convergence,
as a function, by means of a Grothendieck-Ogg-Shafarevich formula (cf. [Rob84] and [Rob85]). The
program indicated by Robba has been subsequently completed by Gilles Christol and Zoghman
Mebkhout (cf. [CM93], [CM97], [CM00], [CM01]).

From the point of view of rigid cohomology, differential equations are a category of coefficients
for a good cohomological theory of an algebraic variety of characteristic p > 0.

The approach of this paper (and also [Pul12], [PP12], [PP13]) is different. We deal with the de
Rham cohomology of any locally free OX -module F endowed with a connection ∇, where X is a
quasi-smooth K-analytic Berkovich curve. We call the couple (F ,∇) a differential equation over
X.

This category of differential equations is abelian, and it covers the class of differential equations
studied in the rigid cohomology. Namely the equations coming from rigid cohomology are subjected
to some conditions:

i) They always have over-convergent coefficients. In the sense of Berkovich this means that X is a
compact curve embedded into a projective curve X, and that F is defined over an unspecified
open neighborhood U of X in X.

ii) By the fact that they have a Frobenius action, they are subjected to certain solvability con-
ditions about their radii of convergence at the boundary of X. This means that the radii of
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convergence of their solutions are all maximal at these points, and hence on the whole curve
X. The only region where these radii are possibly not maximal is along U −X i.e. along the
“over-convergent boundary” of X.

We remove both these assumptions from the picture, and we work with general differential equations
over X. These equations have a further geometrical datum which is (almost) trivial for equations
coming from rigid cohomology: a controlling graph

ΓS(F ) ⊂ X (0.1)

inside the Berkovich curve X. Roughly speaking this is defined as the locus of points that do not
belong to any open disk on which the radii of convergence are all constant functions.1 In [Pul12]
and [PP12] we have proved that ΓS(F ) is a locally finite connected graph such that X − ΓS(F ) is
a disjoint union of open disks, and that the radii of convergence are all continuous functions on X
having the property that they are constant on the connected components of X − ΓS(F ).

As showed by Robba the variation of the radii (i.e. their slopes) along ΓS(F ) is highly related to
the dimension of the local and global de Rham cohomology of F . In the case of differential equations
coming from rigid cohomology the information is all contained at the “over-convergent boundary” of
X. In the general case we have an extremely richer situation, because the graph ΓS(X), containing
the information, is much more complex.

As firstly observed by Robba [Rob75] and Dwork-Robba [DR77], if we are in a neighborhood of
a Berkovich point x ∈ X, then F splits locally at x, into a decomposition separating its solvable
radii from the smaller one. In this decomposition Robba observed (cf. [Rob75]) that the local de
Rham cohomology of the non solvable part is zero: “non solvable differential equation locally do not
have cohomology”.

On the other hand over-convergence is unavoidable because solvable equations over a curve with
boundary usually have infinite dimensional de Rham cohomology. As an example the derivation
acting on the ring of functions over a closed disk has infinite dimensional cokernel, since the formal
primitive of a function fails to converge on the closed disk. But if one restricts the study to differential
equations that are spectral non solvable at the boundary of X, then over-convergence is unnecessary
to have finite dimensionality. So we allow the boundary in our setting under a non solvability
assumption on it.

Now consider the equation F from a global point of view over the Berkovich curve X. Recall that
to recover the over-convergence setting of rigid cohomology it is enough to work over an individual
open neighborhood of X in X. Even though its radii are not solvable at the boundary of X, its
cohomology is highly non trivial. We prove in fact that its global index takes into account the local
indexes of F at the boundary points of ΓS(F ), and at the points of ΓS(F ) where the radii have
some breaks. We are hence induced to give the following

Definition 1 (cf. Def. 3.4.1). We say that ΓS(F ) is essentially finite if it contains only finitely
many points x such that at least one of the following condition is realized:

i) some of the radii have a break at x,

ii) x ∈ ∂X,

iii) x is a point of positive genus,

iv) is a bifurcation point of ΓS(X).

1In this introduction we remove from the picture the complications arising from the choice of the triangulation S. We
only give the general image.
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We then obtain the following result relating the essential finiteness of ΓS(F ) to the finiteness
of the dimension of the de Rham cohomology:

Theorem 1 (cf. Thm. 3.4.5). Le X be a quasi-smooth K-analytic Berkovich curve, and let F be a
differential equation over X. Assume that

i) F is free of Liouville numbers over X,

ii) ΓS(F ) is essentially finite,

iii) The radii of F are spectral non solvable at the points of the boundary ∂X of X.

Then the de Rham cohomology of F is finite dimensional.

The Liouville condition means that the restriction of F to all open annuli in X is free of Liouville
numbers in the sense of Christol-Mebkhout (cf. [CM93], [CM97], . . . ). We prove that it is enough to
test the Liouville condition on a locally finite family of annuli with skeletons in ΓS(F ) (cf. Lemma
3.3.7).

We notice that if ΓS(F ) is essentially finite then it is topologically finite (i.e. ΓS(F ) is a finite
union of intervals), but not necessarily finite as a graph (i.e. having a finite number of edges).

This assumption moreover implies that X is a curve with finite genus in the sense of Q. Liu
[Liu87], so that X is either projective or quasi-Stein. The projective case is well known, so we focus
on the quasi-Stein case.

Theorem 2 (cf. Thm. 3.6.4). Under the assumptions of Theorem 1, if X is not projective, then the
index of F is expressed by the following formula of Grothendieck-Ogg-Shafarevich type:

χ(X,F ) = rank(F ) · χ(X)− IrrX(F ) . (0.2)

In this formula we have

χ(X) := 2− 2g(X)−N(X) . (0.3)

where g(X) is the genus of X in the sense of [Liu87], and N(X) is a topological invariant of X
which roughly represents the maximal number of germs of open segments in X that are not relatively
compact in X. We call it the “open boundary of X” (see section 3.5).

The quantity IrrX(F ) represents the global irregularity of F . It is given by a sum of local terms:
part of these terms are the slopes of the radii at the open an closed boundaries of X, here noted
by seg(SF ), in analogy with the index formula of Christol-Mebkhout. The other local terms are
related to the number of segments of ΓS(F ) that are incident upon the (closed) boundary of X (cf.
Definition 3.6.2):

IrrX(F ) :=
( ∑
x∈∂X

χ(x, SF )
)
· rank(F )−

∑
b∈seg(SF )

∂bH∅,r(−,F|Rb) . (0.4)

The proof of Theorem 1 goes as follows. From the essential finiteness of ΓS(F ) we construct an
finite open covering of X, where the cohomology if finite dimensional, then we inductively apply a
Mayer-Vietoris lemma to deduce the finite dimensionality of the global de Rham cohomology.

The proof of Theorem 2 results from an analysis of the Čech resolution of F , of such a covering.
The only terms of the covering that contribute to the index are those open subsets that are small
neighborhoods of the points having at least one of the properties listed in Definition 1.

If X is compact, or more generally if X is relatively compact into a larger curve on which F is
defined, the essential finiteness of ΓS(F ) is automatic (as a consequence of [Pul12], and [PP12]).
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In particular this is the case of rigid cohomology, by the over-convergence assumption. So we have
a large class of equations that fulfill the theorem.

In the general case, there are several differential equations for which ΓS(F ) is not essentially
finite. The radii of these equations presents infinitely many breaks as one approaches the “open
boundary” of X. These equations do not admits a finite covering on which the cohomology is finite,
so a straightforward application of Mayer-Vietoris Lemma is not possible.

As a converse of Theorem 1 we provide criteria to prove that their cohomology is actually infinite
dimensional.

Theorem 3 (cf. Thm. 3.7.4). Assume that X is not projective, that it has finite genus g(X), and
that it admits a weak triangulation S whose skeleton ΓS is topologically finite (cf. Def. 1.1.2). Let
F be a differential equation free of Liouville numbers over X, with no solvable radii at the boundary
∂X of X. The following conditions are equivalent:

i) ΓS(F ) is essentially finite;

ii) the de Rham cohomology of F is finite dimensional;

iii) for all germ of segment b at the open boundary of X, the radii of F have a finite number of
breaks along b.

The proof is a limit process coming from [CM00]. We approach X by a countable sequence
X1 ⊆ X2 ⊆ · · · ⊆ X of affinoid domains in X, and we prove a limit formula

χ(X,F ) = lim
n
χ(Xn,F|Xn) . (0.5)

More precisely we have

Hi
dR(X,F ) = lim←−

n

Hi
dR(Xn,F|Xn) (0.6)

and the maps Hi
dR(X,F )→ Hi

dR(Xn,F|Xn) are all surjective for all n large enough. So the de Rham
cohomology of X is finite dimensional if and only if the sequence of dimensions of Hi

dR(Xn,F|Xn)
stabilizes for all n large enough.

The proof of these results (even locally around a point) are not straightforward consequence of
the finite dimensionality of rigid cohomology. Indeed essential ingredients are the finiteness results
of [Pul12], [PP12], and also the decomposition results of [PP13].

Structure of the paper.

In section 1, we provide basic definitions about curves, and radii of convergence.

In section 2 we deal with the local cohomology of a differential equation at a Berkovich point. We
generalize several local results to the non solvable case. The finiteness of ΓS(F ) is systematically
employed to reduce to the case of classical rigid cohomology over a tube VS(x,F ) canonically
attached to (x,F ), which is roughly the union of all the disks in X, with boundary point x, on
which the radii of F are all constant.

In section 2 we also deal with the technical problem of super-harmonicity of the partial heights
of the convergence Newton polygon. We know since [Pul12] and [PP13], that there are potentially a
locally finite set CS,r(F ) of pathological points in X such that super-harmonicity fails. The super-
harmonicity at these points is important because it improves the global bound on the size of ΓS(F ),
obtained in [PP13, Cor. 7.2.5] (cf. Cor. 2.8.8). We here obtain such a super-harmonicity at the
pathological points under some technical assumptions. More precisely we have the following result,
whose central point of the proof is Dwork’s dual theory (cohomology with support):
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Theorem 4 (cf. Thm. 2.8.6). Assume that the residual field of K has characteristic p > 0. Let F
be a differential equation over X or rank r. Let x ∈ CS,r(F ), let Dx be the closed disk in X − ΓS
with boundary x, and let V = VS(x,F ). Assume that

i) the canonical inclusion H0
dR(D†x,F ) ⊆ H0

dR(V †,F ) is an equality;

ii) the radii of F are compatible with duals;

iii) F is free of Liouville numbers at x (cf. Def. 2.7.11).

Then for all i = 1, . . . , r the partial height HS,i(−,F ) is super-harmonic at x.

In section 3 we deal with global cohomology.

Note. This is a first draft. It appears clearly that several cohomological notions (as cohomology
with supports, and its duality with the cohomology without supports) should follow from the results
of this paper. We plan to add some parts with those applications.

Acknowledgments. This work finds its genesis in some discussions we had with Francesco Bal-
dassarri, who was expecting the existence of a link between the finiteness of the controlling graphs
and the finite dimensionality of the de Rham cohomology. We thank him heartily for sharing these
inspiring ideas. We also thank Yves André, Gilles Christol, Richard Crew, Kiran S. Kedlaya, Adri-
ano Marmora, Nicola Mazzari, Zoghman Mebkhout, Bertrand Toën, and Nobuo Tsuzuki for helpful
discussions.

1. Definitions and notations

In this section we give definitions and notations that are used in the sequel of the paper. All
definitions comes from [PP13], we only provide the essential vocabulary.

Let K be an ultrametric complete valued field of characteristic 0. Let p be the characteristic of

its residue field k (either 0 or a prime number). We denote by K̂alg the completion of an algebraic
closure Kalg of K.

Setting 1.0.1. Let X be a quasi-smooth K-analytic curve endowed with a weak triangulation S as
in [PP12]. Without loss of generality from now on we assume that X is connected.

By a differential equation or differential module over X we mean a coherent OX -module F
endowed with an (integrable) connection ∇. F is automatically a locally free OX -module of finite
rank. The category of locally free of finite rank OX -modules with connection is an abelian category.
We refer to [PP13] for the main properties of such objects.

1.1 Curves

Here we introduce some definitions and notations that will be frequently used in the paper.

Notation 1.1.1. Let A1,an
K be the Berkovich affine line with coordinate T . Let L be a complete

valued extension of K and c ∈ L. We set

D+
L (c,R) =

{
x ∈ A1,an

L

∣∣ |(T − c)(x)| 6 R
}
, R > 0 (1.1)

D−L (c,R) =
{
x ∈ A1,an

L

∣∣ |(T − c)(x)| < R
}
, R > 0 (1.2)

C+
L (c;R1, R2) =

{
x ∈ A1,an

L

∣∣R1 6 |(T − c)(x)| 6 R2

}
, R2 > R1 > 0 (1.3)

C−L (c;R1, R2) =
{
x ∈ A1,an

L

∣∣R1 < |(T − c)(x)| < R2

}
. R2 > R1 > 0 (1.4)
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If D ⊆ A1,an
L is a disk, we denote by O(D) the ring of analytic functions on D. If D = D−L (c,R),

then

O(D) :=
{∑
n>0

an(T − c)n, an ∈ L, lim
n
|an|ρn = 0, ∀ ρ < R

}
. (1.5)

1.1.1 Branches, germ of segments and sections. Let X be a curve as in Setting 1.0.1. The
Berkovich space X is naturally endowed with a graph structure (cf. [Duc]). By a closed segment
[x, y] ⊂ X we mean the image in X of an injective continuous path [0, 1]→ X with initial point x
and end point y. We also call segments the images ]x, y[, ]x, y], [x, y[ of ]0, 1[, ]0, 1], [0, 1[ respectively.
In this case we say that the segments are open, or semi-open. By convention a segment is never
reduced to a point nor to the empty set.

A germ of segment b out of x ∈ X is an equivalence class of open segments ]x, y[ given by
]x, y1[∼]x, y2[ if and only if there exists z such that ∅ 6=]x, z[⊆]x, y1[∩]x, y2[. By abuse we often write
b =]x, y[ instead of ]x, y[∈ b.

A section of a germ of segment b out of x in X is a connected open subset of U of X containing
such an annulus C (resp. D − {x}), if x is of type 2 or 3 (resp. 1 or 4), and such that x belongs to
the closure of U in X, but not to U itself.

We refer to [Duc] for the definition of a branch. Roughly speaking a branch out of x corresponds
to a direction out of x. Germs of segments out of x correspond bijectively to branches out of x.
They will often be denoted by the same symbol b. By a section of the branch b, we mean a section
of the corresponding germ of segment.

1.1.2 Slopes. Let b be a germ of segment out of x ∈ X, let ]x, y[ be a representative of b, and let
F : [x, y]→ R be a continuous function. If it has a meaning, we use the symbol ∂bF (x) to indicate
the log-slope at x of F along b. We refer to [PP13, 1.1.4] for the definition.

1.1.3 Graphs. The reader can find in [Duc, 1.3.1] the definition of a graph. A single point and
the empty set are graphs. We say that a germ of segment b out of x belongs to a graph Γ ⊆ X if b
is represented by a segment ]x, y[⊂ Γ. A point x ∈ Γ is a bifurcation point if there is more than two
germs of segments out of x belonging to Γ. A point x ∈ Γ is an end point of Γ if there is no open
segments ]z, y[ in X such that x ∈]z, y[⊂ Γ.

In this paper by a locally finite graph we mean a closed connected subset Γ ⊂ X such that

i) Each point x ∈ Γ admits a neighborhood U in X such that Γ∩U is a finite union of segments
and points;

ii) X − Γ is a disjoint union of virtual open disks.

All the graphs of this paper are locally finite.

Definition 1.1.2. Let Γ ⊆ X be a locally finite graph.

We say that Γ is topologically finite if Γ is homeomorphic to a finite union of real intervals.

We say that Γ is finite as a graph if it has a finite number of edges.

A graph which is finite as a graph, is also topologically finite. The converse is not true. A locally
finite graph which is topologically finite is not necessarily finite as a graph (e.g. an interval, having
an infinite number of vertex and edges).

1.1.4 Weak triangulations. Following [Duc, Section 4] and [PP12, Section 2.1], a weak triangu-
lation of X is a locally finite subset S ⊂ X, formed by points of type 2, and 3, such that X −S is a
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disjoint union of virtual open annuli and virtual open disks. The skeleton ΓS of S is then the union
of S and the skeletons of the open annuli that are connected components of X − S.

Remark that the empty set is a triangulation of a virtual open annulus or virtual open disk.

1.1.5 Star-shaped neighborhoods. A connected open neighborhood (affinoid neighborhood V )
U of a point x ∈ X of type 2 or 3 will be called star-shaped if {x} (resp. {x} ∪ ∂V ) is a weak
triangulation of U (resp. V ).

1.1.6 quasi-Stein spaces. Let us recall the definition of a quasi-Stein space (see [Kie67, Defini-
tion 2.3]).

Definition 1.1.3 (quasi-Stein). A k-analytic space X is said to be quasi-Stein if there exists a
countable admissible covering (Xn)n>0 of X such that

i) Xn ⊆ Xn+1;

ii) Xn is an affinoid domain of Xn+1;

iii) the map O(Xn+1)→ O(Xn) has dense image.

Let us now recall the main properties of those spaces (see [Kie67, Satz 2.4]).

Theorem 1.1.4. Let X be a k-analytic quasi-Stein space. Let F be a coherent sheaf on X.

i) For every q > 1, we have Hq(X,F ) = 0.

ii) For every x ∈ X, the stalk Fx is generated by F (X) as an OX,x-module.

Corollary 1.1.5. Let X be a k-analytic quasi-Stein space. The functor F 7→ Γ(X,F ) from locally
free sheaves of OX-modules of finite rank to projective O(X)-modules of finite rank is an equivalence
of categories preserving the rank.

Proof. Starting from a projective OX -module M of rank n, we may associate to it a locally free
sheaf M̃ of rank n. This defines a functor that is a quasi-inverse to that of the statement. The proof
relies on the second statement of Theorem 1.1.4.

Remark 1.1.6. We recall that by a result of Q.Liu [Liu87] every curve with finite genus over a
spherically complete base field is either projective, or quasi-Stein.

Remark 1.1.7. As it will appear useful later we recall the following evidences:

i) The map O(Xn+1)→ O(Xn) is injective by analytic continuation,

ii) The map O(Xn+1)→ O(Xn) is K-linear and continuous, hence also uniformly continuous.

iii) Each O(Xn) is Banach, hence a Fréchet space. Moreover O(X) is also Fréchet since by defi-
nition of the Berkovich sheaf OX one has

O(X) = lim←−
n

O(Xn) . (1.6)

So O(X) is projective limit of a countable family of Banach spaces, hence Fréchet.

1.1.7 Open boundary of X.

Definition 1.1.8 (Open pseudo-annulus). We say that the curve X is an open pseudo-annulus if
it satisfies the following properties:

8
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i) X has no boundary,

ii) X has no points of positive genus,

iii) the set of points that have no neighborhood isomorphic to a disk is an open interval Γ

For any minimal weak triangulation S of X, we have ΓS = Γ. We call Γ the skeleton of X.

Remark 1.1.9. By [Liu87, Prop. 3.2], if K is non trivially valued, algebraically closed, and spher-
ically complete, such a pseudo-annulus X can be embedded into the affine line. So X is either an
open annulus, or X = Y − {y}, where Y is either the affine line or a disk, and y ∈ Y is a rational
point.

Without using the result of [Liu87], we can however prove that a pseudo-annulus is quasi-Stein.

Namely let Γ be the skeleton of X. It is homeomorphic to an open interval. Consider a non
empty triangulation S of X such that ΓS = Γ. Consider the canonical retraction r : X → Γ.

Let I be a closed interval inside Γ. It contains a finite subset T of S. By [Duc, 5.2.2.3], S \T is
still a triangulation of X. We deduce that I is an interval inside the skeleton of an annulus, hence
r−1(I) is a closed annulus.

From the previous argument, it follows that X may be written as an increasing union of closed
annuli. We deduce that X is quasi-Stein.

We now define the open boundary of X. Consider the set I of maps ]0, 1[→ X such that :

i) the map is an homeomorphism of ]0, 1[ onto its image I;

ii) I is the skeleton of a pseudo-annulus X ′ such that X −X ′ is connected;

iii) I is not relatively compact in X.

We define an equivalence relation ∼ in I by saying that two maps are equivalent if the intersection
of their images I1 ∩ I2 is again the image of a map in I.

Definition 1.1.10 (Open boundary). We call open boundary of X the set

∂oX := (I/∼) . (1.7)

of equivalence classes by the above equivalence relation. We call germ of segment at the open
boundary of X an element of (I/∼). If the cardinality of the open boundary is finite we denote it
by

N(X) . (1.8)

As an example, if X is an annulus N(X) = 2, if it is a disk N(X) = 1.

Lemma 1.1.11. If the curve X admits a weak triangulation S such that ΓS is topologically finite,
then the cardinality of the open boundary is finite.

Proof. If we express ΓS as a finite union of real intervals, then there are a finite number of such
intervals that are not relatively compact in X (i.e. their closure in X is not compact). Up to
subdivide each interval into two sub-intervals, we can assume that each non relatively compact
interval I of that union is semi-open. Under this convention, one sees that the interior of a non
relatively compact interval of that union is the skeleton I of a well defined pseudo-annulus in X,
defining an element of the open boundary of X. This correspondence is clearly a bijection with the
open boundary of X, which is then finite.

9
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1.1.8 Euler characteristic of X. We now define the Euler characteristic χ(X) of X. Recall that
for all point x ∈ X of type 2, we denote by g(x) the genus of the residual curve at x (cf. [PP13,
6.2.12], [Duc, 4.2.11.1]). If x is a point of type 3 or 4, its genus is 0 by definition (recall that a point
of type 3 (resp. 4) always admits an open neighborhood in X isomorphic to an open annulus (resp.
disk)). Notice that χ(X) is insensitive to scalar extension of K, so points of type 4 do not play any
role here.

The genus of an arbitrary quasi-smooth k-analytic curve has been defined by Q. Liu in [Liu87,
Définitions 1.4 et 1.5]. We state it in different terms, which are more suitable to our setting.

Definition 1.1.12. If X is k-affinoid, and if S is a finite weak triangulation of X, we define the
topological Euler characteristic of X as

χtop(X) := Card(S)− ES , (1.9)

where ES is the number of edges of ΓS and S the set of its vertexes. We also define the genus of X
as

g(X) :=
∑
x∈S

g(x) + 1− χtop(X) . (1.10)

Those quantities do not depend on the choice of the triangulation S.

In general, we set

χtop(X) := sup{χtop(Y ) | Y affinoid domain of X} (1.11)

and

g(X) := sup{g(Y ) | Y affinoid domain of X} . (1.12)

We say that the curve X has finite genus if g(X) < +∞.

If X is an analytic domain of an algebraic curve, then its genus is finite. Moreover if the curve X
is projective and geometrically connected, by [Liu87, Proposition 1.5], the quantity g(X) coincides
with its genus.

Definition 1.1.13. Let S be a weak triangulation of X. For all x ∈ S we denote by NS(x) the
number of germ of segments out of x belonging to ΓS, and

χ(x, S) := 2− 2g(x)−NS(X) . (1.13)

Lemma 1.1.14 (Compare with [PP13, Lemma 7.2.1]). Let S be a non-empty weak triangulation of
X. Assume that the skeleton ΓS is topologically finite, the genus g(X) is finite, and that there are
a finite number of points of positive genus in X. Then the number

χ(X) := lim
S′⊆S
S′ finite

∑
x∈S′

χ(x, S′) (1.14)

is finite and independent of S, and it is equal to

χ(X) = 2− 2g(X)−N(X) . (1.15)

Proof. Let b1, . . . , bm be the germs of segment at the open boundary of X. We construct a sequence
of affinoid domains (Yn)n is X such that

i) X = ∪nYn;

ii) for all n we have X − Yn = ∪mi=1An,i, where, for all i, An,i is a pseudo-annulus corresponding
to bi;

iii) Sn := S ∩ Yn is a weak triangulation of Yn.

10



Convergence Newton polygon IV: local and global index theorems

One sees that for all n we have g(Yn) = g(X), since the genus of a point close to the open boundary
of X is always 0.

Let ESn be the number of edges of ΓSn ⊂ Yn between points of Sn. We have∑
x∈Sn

(2− 2g(x)−NS(x)) = −2
∑
x∈Sn

g(x) + 2 Card(Sn)− 2ESn −N(X). (1.16)

By (1.10) we conclude.

1.2 Radii

In this section we recall the definition of the radii of convergence of a differential equation over X
following [Pul12], [PP12] and [PP13]. The properties listed here are extracted from [PP13], where
one can find a more extensive treatment.

Without explicit mention of the contrary, we assume everywhere that the curve X is endowed
with a weak triangulation S.

Definition 1.2.1. Let x ∈ X. The map M (H (x)) → X lifts canonically to a map M (H (x)) →
XH (x) by the universal property of the Cartesian diagram XH (x)/H (x) → X/K. We denote by
tx ∈ XH (x) the H (x)-rational point so obtained.

We fix once for all a large complete valued field extension Ω/K containing (isometrically) the
fields H (x), for all x ∈ X (this is possible by [PP13, ]). We denote by D(x) ∈ XΩ the maximal
open disk centered at tx whose image in X is reduced to x.

The weak triangulation S of X can be canonically lifted into a weak triangulation of XΩ, still
called S, (cf. [PP12]), and we denote by D(x, S) ⊆ XΩ the maximal disk centered at tx such that
D(x, S) ∩ S = ∅.

Choose an isomorphismD(x, S)
∼→ D−Ω(0, R) sending tx at 0. By a result of M. Lazard (cf. [Laz62]

and [Chr12, Ch.II, Section 4.4]) the restriction F̃ of F to D−Ω(0, R) is free of rank r = rank(Fx).
Denote by

RF̃
S,i(x) > 0 (1.17)

the radius of the maximal open disk centered at 0 and contained in D−Ω(0, R) on which the connection

of F̃ admits at least r − i+ 1 horizontal sections that are linearly independent over Ω.

Definition 1.2.2 (Multiradius). We call multiradius of F at x the tuple

RS(x,F ) := (RS,1(x,F ), . . . ,RS,r(x,F )) (1.18)

where, for every i, one has RS,i(x,F ) := RF̃
S,i(x)/R ∈ ]0, 1].

The definition only depends on x and (F ,∇). Each RS,i(x,F ) is the inverse of the modulus (cf.
[PP13, 1.1.2]) of a well defined sub-disk DS,i(x,F ) ⊆ D(x, S), centered at tx:

∅ 6= DS,1(x,F ) ⊆ DS,2(x,F ) ⊆ · · · ⊆ DS,r(x,F ) ⊆ D(x, S) . (1.19)

Remark 1.2.3. Let S, S′ be two weak triangulations of X. If ΓS = ΓS′, then RS(−,F ) = RS′(−,F ).
Indeed the disk D(x, S) only depends on ΓS.

Definition 1.2.4. Let i ∈ {1, . . . , r}. We say that the index i separates the radii of F at x ∈ X if
either i = 1 or if RS,i−1(x,F ) < RS,i(x,F ). We say that i separates the radii of F if it separates
the radii of F at all x ∈ X.

11
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We say that the i-th radius RS,i(x,F ) is
spectral if DS,i(x,F ) ⊆ D(x) ,
solvable if DS,i(x,F ) = D(x) ,
over-solvable if DS,i(x,F ) ⊃ D(x) .

(1.20)

Solvable radii are spectral by definition. We also say that the index i is spectral, solvable, over-
solvable.

Remark 1.2.5. For a radius RS,i(x,F ) being spectral non solvable is an intrinsic property, since
it does not depend on the choice of S (cf. [PP13, 2.8.1]). The same is true for being “solvable or
oversolvable”, but the fact of being over-solvable highly depends on S. Over- solvable radii can be
solvable with respect to another triangulation.

Definition 1.2.6. We denote by 0 6 ispx 6 isol
x 6 r the indexes such that

i) RS,i(x,F ) is spectral non solvable for i 6 ispx ,

ii) RS,i(x,F ) is solvable for ispx < i 6 isol
x ,

iii) RS,i(x,F ) is over-solvable for isol
x < i.

We call ispx and isol
x the spectral and over-solvable cutoffs respectively.

If isol
x = 0 (resp. isol

x = r), then all the radii are over-solvable (resp. spectral). If ispx = 0 (resp.
ispx = r), then all the radii are solvable or over-solvable (resp. spectral non solvable). If ispx = isol

x ,
then F has no solvable radii.

Definition 1.2.7 (Convergence Newton polygon). We call convergence Newton polygon of F at
x ∈ X the epigraph of the unique continuous convex function hx : [−∞, r[→ R>0 satisfying

i) hx(0) = 0, and hx(i)− hx(i− 1) = − log(RS,r−i+1(x,F )), for all i = 1, . . . , r;

ii) For all i = 1, . . . , r the function hx is affine over [i− 1, i], and constant on ]−∞, 0].

In other words it is the polygon whose slopes are − logRS,r(x,F ) 6 · · · 6 − logRS,1(x,F ). For
all i = 1, . . . , r the numbers hx(i) =

∑r
j=r−i+1− logRS,j(x,F ) are called the partial heights of the

polygon.

The following definition is convenient for technical reasons concerning the super-harmonicity
properties. It agrees with the conventions of [Pul12, Section 4.3].

Definition 1.2.8 (Reversed Newton polygon). We call reversed convergence Newton polygon of F
the polygon whose slopes are logRS,1(x,F ) 6 · · · 6 logRS,r(x,F ).

Let i 6 r = rank(F ). We call i-th partial height of F the function

HS,i(x,F ) :=
∏

j=1,...,i

RS,j(x,F ) . (1.21)

With the notations of Def. 1.2.7 one has ln(HS,i(x,F )) = hx(r − i+ 1)− hx(r).

Definition 1.2.9 (Vertex free of solvability). We say that i = 1, . . . , r is a vertex at x, of the
reversed convergence Newton polygon, if i = r, or if i+ 1 separates the radii at x. We say that i is
a vertex free of solvability at x if i moreover none of the indexes j ∈ {1, . . . , i} is solvable at x.

Proposition 1.2.10 (integrality of the partial heights). Let x ∈ X, and let b be a germ of segment
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out of x. For all i = 1, . . . , r, the slopes of HS,i(−,F ) along b belong to the set

Z ∪ 1

2
Z ∪ · · · ∪ 1

r
Z . (1.22)

Moreover if i = r or if RS,i(x,F ) < RS,i+1(x,F ) (i.e. if i is a vertex of the reversed polygon), then

∂bHS,i(x,F ) ∈ Z . 2 (1.23)

1.3 Controlling graphs

In [Pul12] and [PP12] we obtained the following result.

Theorem 1.3.1 ([Pul12],[PP12]). For all i = 1, . . . , r the functions x 7→ RS,i(x,F ) are continuous.
Moreover there exists a locally finite graph Γ ⊆ X such that for all i the radius RS,i(−,F ) is
constant on every connected components of X − Γ.

The curve X − ΓS is disjoint union of virtual open disks.

Definition 1.3.2. Let T be a set, and let f : X → T be a function. We call S-controlling graph
(or S-skeleton) of f the set ΓS(f) of points x ∈ X that admit no neighborhoods2 D in X such that

i) D is a virtual disk;

ii) f is constant on D;

iii) D ∩ ΓS = ∅ (or equivalently D ∩ S = ∅).

In particular ΓS ⊆ ΓS(f).

Remark 1.3.3. The graph ΓS(f) is different from the locus defined as the complement of the union
of the open subsets of X on which f is constant. Indeed f can be constant along some segments in
ΓS(f), and hence on the corresponding annulus in X. This is because the definition involves only
disks on which f is constant, and not arbitrary subsets.

We denote by ΓS,i(F ) the controlling graph of the function RS,i(−,F ). By definition

ΓS ⊆ ΓS,i(F ) . (1.24)

Hence X − ΓS,i(F ) is a disjoint union of virtual open disks. If X = D is a virtual open disk with
empty weak triangulation, and if RS,i(−,F ) is constant on D, then ΓS,i(F ) = ΓS = ∅. In all other
cases ΓS,i(F ) is non empty. The controlling graph ΓS(F ) of (F ,∇) is by definition the union of all
the ΓS,i(F ):

ΓS(F ) :=

r⋃
i=1

ΓS,i(F ) . (1.25)

One has ΓS(F ) = ∅ if and only if X = D is a virtual disk with empty weak triangulation, and
RS(−,F ) is a constant function on D. An operative description of the controlling graphs is given
in [PP13, sections 6 and 7] .

Proposition 1.3.4 ([PP12, (2.3.1)], [PP13, 2.7.1]). Let S, S′ be two triangulations such that ΓS ⊆
ΓS′. Then for all i = 1, . . . , r one has

RS′,i(x,F ) = min
(

1 , fS,S′(x) · RS,i(x,F )
)
, (1.26)

where fS,S′ : X → [1,+∞[ is the function associating to x the modulus fS,S′(x) > 1 of the inclusion
of disks D(x, S′) ⊆ D(x, S). 2

2Note that D(x) is not a neighborhood of x in X.
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Proposition 1.3.5 ([PP12, 3.3.1],[PP13, 2.7.2]). Let S, S′ be two triangulations such that ΓS ⊆ ΓS′.
Then

ΓS′,i(F ) = ΓS′ ∪ ΓS,i(F ) . 2 (1.27)

Proposition 1.3.6. Let Y ⊆ X be an analytic domain. Let SX and SY be triangulations of X and
Y respectively such that (ΓSX ∩ Y ) ⊆ ΓSY . If y ∈ Y , then for all i = 1, . . . , r we have

RSY ,i(y,F|Y ) = min
(

1 , fSX ,SY (y) · RSX ,i(y,F )
)
, (1.28)

where fSX ,SY : Y → [1,+∞[ is the function associating to y ∈ Y the modulus fSX ,SY (y) > 1 of the
inclusion D(y, SY ) ⊆ D(y, SX). Hence

ΓSY ,i(F|Y ) = (ΓSX ,i(F ) ∩ Y ) ∪ ΓSY . 2 (1.29)

1.4 Weak super-harmonicity of HS,i(x,F ).

Definition 1.4.1. We define inductively a sequence of locally finite sets

CS,1(F ) ⊆ . . . ⊆ CS,r(F ) ⊆ X (1.30)

as follows. Let ℵ1 := ∅, and for 2 6 i 6 r let ℵi be the locally finite set of points x ∈ X − ΓS
satisfying

i) RS,i(−,F ) is solvable at x;

ii) x is an end point of ΓS,i(F );

iii) x ∈
(
∪j=1,...,iΓS,j(F )

)
∩ ΓS,i(F ) ∩ ΓS(HS,i(−,F )).3

Define

CS,i(F ) :=
⋃

j=1,...,i

ℵj . (1.31)

In the sequel if no confusion is possible we write CS,i := CS,i(F ) for short.

We refer to [PP13, 6.2.5] for the definition of ddcHS,i(x,F ).

Theorem 1.4.2 (weak super-harmonicity). Let x ∈ X. If it is of type 2, assume that it satisfies the
condition (TR) of [PP13, 6.2.17]. Let i ∈ {1, . . . , r}.

i) If x ∈ ΓS ∩ Int(X), then

ddcHS,i(x,F ) 6 (2g(x)− 2 +NS(x)) ·min(i, ispx ). (1.32)

ii) If x /∈ (S ∪ CS,i), then

ddcHS,i(x,F ) 6 0. (1.33)

Moreover equalities hold in (1.32) and (1.33), if i is a vertex free of solvability at x (cf. Def. 1.2.9).

2. Local measure of the irregularity at a Berkovich point

In [PP13, Rk. 5.5.4 and section 5.7] we have seen that the Christol-Mebkhout Newton polygon of
a solvable differential equation over the Robba ring equals the derived of the convergence Newton
polygon. In particular the irregularity of such an equation (which is defined as the height of the
Christol-Mebkout Newton polygon) coincides with the slope of the height HS,r(−,F ) of the reversed
convergence Newton polygon.

3Here ΓS(HS,i(−,F )) have been defined in Def. 1.3.2.
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The Grothendieck-Ogg-Shafarevich formula for an over-convergent isocrystal (cf. [Rob84], [Rob84],
[CM97], [CM00], [CM01]) describes the index as the sum of the Euler characteristic of the variety
multiplied by the rank of the crystal, plus the sum of the irregularities of the equations at the
singularities of the isocrystal. In the sense of Berkovich the sum of the irregularities is the negative
of a certain Laplacian of HS,r(−,F ) (after a convenient localization, cf. Thm. 2.7.13). The negative
of the Laplacian

− ddcHS,r(x,F ) (2.1)

is then related to the local measure of the irregularity at x.

It seems to us important to prove that the sum of the local irregularities at x is a non negative
integer, that is the function HS,r(x,F ) is super harmonic at x:

− ddcHS,r(x,F ) > 0 . (2.2)

The fact that this number is an integer is clear from Proposition 1.2.10, and it is supposed to be
related to the local ramification filtration of the Tannakian group attached to the fiber functor at
x.4 This is one of the motivations of this section. The other motivation is to slight extend the result
of Christol and Mebkhout (cf. [CM00], [CM01]) about the finite dimensionality of the de Rham
cohomology, in order to cover the case of non solvable differential modules. In section 3 in fact we
obtain a global finite dimensionality result together with a global Grothendieck-Ogg-Shafarevich
formula (i.e. index formula) that constitutes a global analogue of Robba’s (local) measure of the
irregularity (cf. [Rob84], [Rob85]).

Points that belongs to the boundary of X behave as if some branches out of them were missing.
In this case −ddcHS,r(x,F ) does not contain “the entire information”. So we bound our study to
the points of Int(X).

On the other hand we have already proved in Theorem 1.4.2 that we have super-harmonicity
outside a locally finite subset of X which is included in the union of S, ∂X, and the set CS,r(F )
(cf. Definition 1.4.1). In particular if none of the indexes i = 1, . . . , r is solvable at x ∈ Int(X) we
have

ddcHS,r(x,F ) = 0 . (2.3)

The default of harmonicity comes then from the solvability. Theorem 1.4.2 shows that we do not
have super-harmonicity at the points of S. It remains to study the situation at a point of CS,r(F ).
Such a point does not belongs to ΓS , hence it always have a maximal disk as an open neighborhood,
so we are reduced to working in the affine line.

In this section we deal with that problem by considering the local cohomological situation
underling to the formula given in Theorem 1.4.2. We translate in our context the index formula
of Robba [Rob85] and Christol-Mebkhout [CM01], and relate it to the Laplacian ddcHS,r(x,F ). A
straightforward application of these result shows that, locally around x, the formula of Theorem
1.4.2 comes from a local Grothendieck-Ogg-Shafarevich formula under certain classical assumptions
concerning Liouville numbers.

Surprisingly enough, the classical conditions of non Liouville exponents, and the local Grothendieck-
Ogg-Shafarevich formula, are not enough to obtain super-harmonicity (2.2) at the points of CS,r(F )
(see Thm. 2.8.6). We also need some extra conditions. In particular we need a compatibility condi-
tion between the radii of F and of its dual, in analogy with the condition of [PP13, 5.4.1, 5.4.3],
where an analogous condition implies a direct sum decomposition.

4Note that such a filtration only exists locally (i.e. for the Tannakian group of the category of differential equations
over OX,x), since a filtration of the global Tannakian group would imply a global decomposition theorem separating
the radii at x which is false.
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Finally we notice that the cohomological results of this section are not entirely straightforward
consequence of the index results of Christol and Mebkhout. Indeed the finiteness of the radii (cf.
[Pul12], [PP12], Theorem 1.3.1) is used to guarantee that the number of singular directions of F
out of x is not infinite (cf. Definition 2.2.2). And the decomposition theorems of [PP13], in their
local form, are a crucial step.

2.1 Tubes and over-convergence.

In this section we give some definitions imitating the rigid cohomology setting.

Definition 2.1.1 (Elementary tube). Let x ∈ X. An elementary tube V centered at x is one of the
two kind of domains:

i) V is an affinoid domain of X, containing x, such that V − {x} is a disjoint union of open
disks.

ii) V = X, and V − {x} is a disjoint union of open disks.

Remark 2.1.2. The usual tubes of rigid cohomology are more complex domains. We here restrict
the definition because this corresponds to our needing.

Remark 2.1.3. If x is a point of type 1 or 4, there is no elementary tubes centered at x, because
there are no disks with boundary x.

If x has type 3, an elementary tube V centered at x is either reduced to {x}, or a closed disk
having x at its boundary, or X = P1,an

K and V = X.

If x is of type 2, then V is always an affinoid domain of X, except in the individual case where
x ∈ Int(X) and V contains all germ of segments out of x. In this case V = X, because X is
connected.

Definition 2.1.4 (Singular directions). Let x ∈ X, and let V be an elementary tube centered at x.
There are a finite number of branches b1, . . . , bn out of x that do not intersect V . We call them
singular directions of x with respect to V :

Sing(x, V ) := {b1, . . . , bn} . (2.4)

If K is algebraically closed we set

NV (x) := n = Card(Sing(x, V )) . (2.5)

If K is general we set

NV (x) := NV
K̂alg

(x) . (2.6)

Definition 2.1.5 (Over-convergent functions). Let V be an elementary tube centered at x ∈ X. We
set

O†X(V ) :=
⋃
V⊂U

O(U) , (2.7)

where U runs in the family of all neighborhoods of V in X. We often write O†(V ) := O†X(V ) if no
confusion is possible.

Remark 2.1.6. If V = X one has O†(V ) = O(V ). The word over-convergent loose then its mean-
ing. The definition is completely satisfactory only if x ∈ Int(X). In rigid cohomology this is often

fulfilled by embedding V into a projective curve X and considering O†
X

(V ) instead of O†X(V ).

Remark 2.1.7. Let V be an elementary tube centered at x ∈ X. A basis of neighborhoods of V is
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formed by star-shaped neighborhoods of x in X containing V (cf. 1.1.5). Such a neighborhood can
be written as

U :=
( ⋃
b∈Sing(x,V )

Cb

)⋃
V (2.8)

where Cb is a virtual open annulus, which is a section of b (cf. section 1.1.1).

Definition 2.1.8 (Basic neighborhoods). We call basic neighborhood of the elementary tube V ,
any neighborhood of V of the form (2.8).

Definition 2.1.9. If b is a branch out of x ∈ X, and if the connected component of X − {x}
containing b is a virtual open disk, then we denote it by Db. If x /∈ ΓS we denote by

Dx (2.9)

the closed disk with boundary x.

Remark 2.1.10. Let V be an elementary tube centered at x. If M is a differential module over
O†(V ), then it is defined over some basic neighborhood U of V . Since {x} is always a weak trian-
gulation of U , we may consider the radii

R{x},i(y,M) , y ∈ U . (2.10)

In the sequel M will often be the restriction to O†(V ) of a global differential equation over X, and
we will compare the global radii over X with the radii R{x},i(y,M) (cf. proof of Thm. 2.8.2).

Definition 2.1.11 (Euler characteristic). Let x ∈ Int(X) be a point of type 2, and let V be an
elementary tube centered at x. If K is algebraically closed, and if b1, . . . , bNV (x) are the singular
directions of V , we denote by

χ(V †) := χ(Cx − {b1, . . . , bNV (x)}) = 2− 2g(x)−NV (x) (2.11)

the Euler-Poincaré characteristic of Cx − {b1, . . . , bNV (x)}.
If K is general, we set

χ(V †) := χ(V †
K̂alg

) . (2.12)

Remark 2.1.12 (Mittag-Leffler decomposition). Assume that K is algebraically closed. Let X be
the affine line, x := x0,1, and Dx := D+

K(0, 1) be the closed unit disk. Let V ⊂ X be an elementary
tube centered at x. Let b∞ be the direction out of x not in Dx (and hence not in V ).

Each function of O†(V ) can be written uniquely as (cf. [Chr12, Section 3.1])

fb∞(T ) +
∑

b∈Sing(x,V )−{b∞}

fb(T ) , (2.13)

where

i) fb∞(T ) =
∑

k>0 ak,b∞T
k converges for |T | 6 1 + ε for some ε > 0;

ii) For all b ∈ Sing(x, V )− {b∞}, fb(T ) =
∑

k>1 ak,b(T − cb)−k converges for |T − cb| > 1− ε for
some unspecified ε > 0, and cb is such that the open disk Db centered at cb with boundary x,
contains the branch b.

The same happens for any f ∈ O(V ) with the difference that f∞ converges for |T | 6 1, and fb
converges for |T − cb| > 1.
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So we have

O†(V ) = O†(Dx)⊕
( ⊕
b∈Sing(x,V ),b 6=b∞

(T − cb)−1 · O†(P1,an
K −Db)

)
, (2.14)

O(V ) = O(Dx)⊕
( ⊕
b∈Sing(x,V ),b 6=b∞

(T − cb)−1 · O(P1,an
K −Db)

)
. (2.15)

2.2 Canonical local decomposition.

Proposition 2.2.1. Let F be a differential equation over X, and let x ∈ X be a point of type 2 or
3. The union of {x} with all virtual open disks D, with boundary x, such that D ∩ ΓS(F ) = ∅, is
an elementary tube centered at x.

Proof. This follows immediately from the locally finiteness of the graph ΓS(F ) (cf. Thm. 1.3.1).

Definition 2.2.2 (Canonical tube and singular directions). Let F be a differential equation over
X, and let x ∈ X be a point of type 2 or 3. We denote by

VS(x,F ) (2.16)

the elementary tube centered at x defined in Proposition 2.2.1. We set

Sing(x,F ) := Sing(x, VS(x,F )) . (2.17)

The following proposition is a direct consequence of the global decomposition theorems [PP13,
5.4.3, 5.4.10, 5.6.14].

Proposition 2.2.3 (Canonical local decomposition). Let x ∈ X be a point of type 2 or 3. There
exists a basic neigborhood U of VS(x,F ) in X, such that the restriction F|U of F to U admits a
direct sum decomposition

F|U := ⊕0<ρ61F
ρ
|U (2.18)

where F ρ
|U takes in account the radii of F whose value at x is ρ.

In particular we have a decomposition

F|U = F>sol
|U ⊕F<sol

|U , (2.19)

where F<sol
|U takes in account the radii of F that are spectral non solvable at x, and F>sol

|U the larger

radii.5 We call (2.19) the canonical local decomposition of F . 2

2.3 Over-convergent isocrystals.

We continue our analogy with rigid cohomology.

Definition 2.3.1 (Over-convergent isocrystals). Let V be an elementary tube centered at a point
x ∈ X of type 2 or 3. An over-convergent isocrystal over V is a differential module M over O†(V )
such that

R{x},1(x,M) = 1 . (2.20)

Remark 2.3.2. Let M be an over-convergent isocrystal over an elementary tube V centered at x.
By [PP13, 6.1.4,ii)] it follows that the radii R{x},i(−,M) are all constant functions over V with
value 1. In particular M is trivial over each disk in V − {x}. So if M is considered as a differential

5Spectral radii are invariant by localization, and by changing of the weak triangulation (cf. Remark 1.2.5), so we do
not need here to specify the triangulation.
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module over a basic neighborhood U of V , then the branches out of x that belong to Γ{x},i(M) are
exactly those of Sing(x, V ). And if U is small enough, one also has

Γ{x},i(M) = ΓU , for all i = 1, . . . , r = rank(M) . (2.21)

Remark 2.3.3. Let F be a differential equation over X. If x is a point of type 2 or 3, then
V = VS(x,F ) is an elementary tube centered at x, and the module F>sol

|V † of Proposition 2.2.3, is

naturally an over-convergent isocrystal over V .

Remark 2.3.4. If M is an over-convergent isocrystal over an elementary tube V , then

V{x}(x,M) = V , Sing(x,M) := Sing(x, V ) . (2.22)

Definition 2.3.5. Let F be a differential equation over X, and let x ∈ X be a point of type 2 or
3. If K is algebraically closed, we denote by

NS(x,F ) := Card(Sing(x,F )) (2.23)

the number of singular directions of VS(x,F ). Namely

NS(x,F ) =

{
number of branches out of x belonging to ΓS(F ) if x ∈ ΓS(F )
1 if x /∈ ΓS(F ).

(2.24)

If K is general, we denote by NS(x,F ) the number of singular directions of VS(x,F )
K̂alg .

Remark 2.3.6. Assume that K is algebraically closed. Let x ∈ Int(X) be a point of type 2. Let
Cx − {b1, . . . , bNS(x,F )} be the residual curve of VS(x,F ). Hence

χ(VS(x,F )†) =

{
2− 2g(x)−NS(x,F ) if x ∈ ΓS(F )
1 if x /∈ ΓS(F ).

(2.25)

2.4 De Rham cohomology and index (first properties).

Definition 2.4.1 (De Rham cohomology and Index). Let A be a K-algebra. Let Ω1
A be an locally

free A-module of rank one with a derivation d : A→ Ω1
A, with kernel K. Let ∇ : M→ M⊗A Ω1

A be
a differential module, that we often identify to a differential operator ∇ : M→ M. If the kernel and
the cokernel of ∇ are finite dimensional K-vector spaces, we say that M has a finite index and we
set

H0
dR(A,M) := Ker(∇), (2.26)

H1
dR(A,M) := Coker(∇), (2.27)

χ(M, A) := dimKH0
dR(A,M)− dimKH1

dR(A,M) . (2.28)

The index of M is by definition the difference χ(A,M).

If Y ⊆ X is a quasi-Stein analytic domain, if M is an O(Y ) module, and if the index exists, we
write

Hi
dR(Y,M) := Hi

dR(O(Y ),M) , χ(Y,M) := χ(O(Y ),M) . (2.29)

If V is an elementary tube around x, if M is a differential module over O†(V ), and if the index
exists, we set

Hi
dR(V †,M) := Hi

dR(O†(V ),M) , χ(V †,M) := χ(O†(V ),M) . (2.30)

We denote by hi(·, ·) the dimension as a K-vector space of H i(·, ·).

Let F be a differential equation over the curve X. We call E(F )· : (· · · → 0 → F
∇→ F ⊗

Ω1
X → 0 → · · · ) the complex of coherent sheaves of groups, where F is placed at the degree 0.

19
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The cohomology of F (resp. the hypercohomology of E(F )·) will be denoted by H i(·,F ) (resp
Hi(·, E(F )·)).

Definition 2.4.2. The de Rham cohomology groups Hi
dR(X,F ) of F are by definition the hyper-

cohomology groups Hi(X, E(F )·) of the complex E(F )·.

If X is a quasi-Stein space definitions 2.4.1 and 2.4.2 agrees : HdR(X,F ) = HdR(O(X),F (X)).
The following proposition together with Corollary 2.4.6 provide conditions to have zero index in the
spectral non solvable case.

Proposition 2.4.3. Assume that the curve X is a quasi-Stein space. Let F be a differential equation
over X. Assume that we are in one of the following two situations

Situation 1:

i) ΓS 6= ∅ (i.e. X is not a virtual open disk with empty weak triangulation).

ii) ΓS(F ) = ΓS;

iii) all the radii of F are spectral non solvable at each point x ∈ ΓS(F ).

Situation 2:

i) X = D is a virtual open disk with empty triangulation,

ii) Let I be the germ of segment at the boundary of the disk D. Then the radii of F are all constant
and spectral non solvable over I.

Then

H0
dR(X,F ) = H1

dR(X,F ) = χ(X,F ) = 0 . (2.31)

Proof. A global solution of F produces a solution converging on some maximal disk D(x, S), and
hence a solvable or over-solvable radius. So H0

dR(O(X),F ) = 0. By the equivalence with global
sections we have the equality H1

dR(XF ) = Ext1(F ∗(X),O(X)) (cf. [Ked10, 5.3.3]). We prove that
Ext1(F ∗(X),O(X)) = 0 by proving that any sequence

0→ O(X)→ E(X)→ F ∗(X)→ 0 (2.32)

splits.

In the situation 1, condition iii) implies that the radii of F and of F ∗ coincide by [PP13, Prop.
6.3.2 and Thm. 5.4.1], while condition ii) implies ΓS,1(F ) ∪ · · · ∪ ΓS,i−1(F ) ⊆ ΓS,i(F ) for all i. So
the sequence (2.32) fulfills the assumptions of the decomposition Theorem [PP13, 5.4.10], hence it
splits.

In the situation 2, by [Ked10, 12.4.1] together with the concavity property of the radii [PP13,
Remark 6.1.3] (cf. also [Pul12, Prop. 7.5, Lemma 7.7]), the radii of F are stable by duality and
constant on D. By [PP13, Prop. 2.9.5] the radii of E are the union of those of F ∗ and of O, in
particular they are all constant. So by the decomposition Theorem [PP13, 5.4.10] the sequence
splits.

Corollary 2.4.4. Assume that the curve X is quasi-Stein. Let F be a differential equation over X.
Assume that i is an index separating the radii of F over X, and that F<i satisfies the assumptions
of Proposition 2.4.3. Then F has a finite index over O(X) if and only if F>i has a finite index,
and we have

H0
dR(X,F ) = H0

dR(X,F>i) , H1
dR(X,F ) = H1

dR(X,F>i) , χ(X,F ) = χ(X,F>i) . (2.33)

Proof. Write the snake diagram of ∇ acting on the sequence 0→ F>i → F → F<i → 0.
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Corollary 2.4.5. Let V be an elementary tube centered at x, and let M be a differential module
over O†(V ). Assume that

i) the radii R{x},i(−,M) are all spectral and non solvable at x;

ii) the radii of M are all constant functions over V (i.e. if Γ{x}(M|V ) = {x}).

Then

H0
dR(V †,M) = H1

dR(V †,M) = χ(V †,M) = 0 . 2 (2.34)

Corollary 2.4.6. Let x be a point of type 2 or 3. Let F be a differential equation over X, and
let V := VS(x,F ). Let F|V † = F<sol

|V † ⊕F>sol
|V † be the canonical local decomposition of Proposition

2.2.3, with V = VS(x,F ). Then

H0
dR(V †,F<sol

|V † ) = H1
dR(V †,F<sol

|V † ) = χ(V †,F<sol
|V † ) = 0 . (2.35)

Moreover FV † has a finite index if and only if F>sol
V †

has a finite index, and in this case for i = 0, 1
we have

Hi
dR(V †,F|V †) = Hi

dR(V †,F>sol
|V † ) , χ(V †,F|V †) = χ(V †,F>sol

|V † ) . 2

(2.36)

Corollary 2.4.7. Let F be a differential equation over X. Let D ⊆ X be a virtual open disk such
that ΓS(F ) ∩D = ∅. Then F has a finite index on D and H1

dR(D,F ) = 0.

Proof. The radii of F are all constant over D. By corollary 2.4.4, the cohomology of F|D equals that
of its trivial sub-module. Since d : O(D)→ O(D) is surjective, its connection has zero cokernel.

2.5 Equations with log-affine radii over annuli

Let C := C−K(0; r1, r2) be a virtual open annulus with empty weak triangulation. Let F be a
differential equation over C of rank r.

Definition 2.5.1 (Robba property). We say that the index i ∈ {1, . . . , r} satisfies the Robba prop-
erty if R∅,i(x0,ρ,F ) = 1, for all ρ ∈]r1, r2[.

Proposition 2.5.2 (Existence of the Robba part). Let F be a differential equation over C of rank
r. Let i ∈ {1, . . . , r} be the smallest index satisfying the Robba property. Assume that i separates the
radii of F at the points of the segment ]x0,r1 , x0,r2 [. Then i separates the radii of F globally over
C. In particular, by [PP13, Thm.5.3.1], F admits a sub-module F>i ⊆ F .

Proof. By [PP13, 6.1.4] one has R∅,i(x,F ) = 1, for all x ∈ C. One has R∅,i−1(x,F ) < 1 for all
x ∈ C. Indeed if R∅,i−1(x,F ) = 1, then the function R∅,i−1(−,F ) is constant on the maximal
disk D(x, S) containing x. By continuity if y is the boundary of D we have R∅,i−1(y,F ) = 1. Since
y = x0,ρ for some ρ ∈]r1, r2[ we have a contradiction.

Definition 2.5.3. If F fulfills the assumptions of Proposition 2.5.2 we say that F admits a Robba
part, and we call the Robba part of F the sub-module

FRobba := F>i . (2.37)

Corollary 2.5.4. Assume that the radii {R∅,i(−,F )}i of F are all log-affine on the segment
]x0,r1 , x0,r2 [. Then FRobba is a direct summand of F , and both the kernel and cokernel of the
connection of F/FRobba are zero. In particular F has a finite index if and only if FRobba has a
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finite index. Moreover for i = 0, 1 we have

Hi
dR(C,FRobba) = Hi

dR(C,F ) , χ(C,FRobba) = χ(C,F ) . (2.38)

Proof. Apply Corollary 2.4.4 to the sequence 0 → FRobba → F → F/FRobba → 0. The affinity
assumption on the radii implies that Γ∅(F/FRobba) = ΓC =]x0,r1 , x0,r2 [ (cf. [PP13, 5.5.1]).

Remark 2.5.5. We will prove in Corollary 3.7.1 that if the radii of F are not log-affine over
]x0,r1 , x0,r2 [, the cohomology of F/FRobba is possibly not zero. Moreover (under some conditions
of non Liouville along the controlling graphs of F ) the cohomology is infinite dimensional if the
concave function ρ 7→ H∅,r(x0,ρ,F ) has a finite number of slopes for x0,ρ approaching the boundary
of the annulus.

We provide here a first definition of equations free of Liouville numbers, which holds for equations
having log-affine radii along the skeleton of an annulus. This is the first of three definitions, the
second (cf. Def. 2.7.11) is given for differential modules over elementary tubes (it is a local definition).
Finally the the global definition (cf. Def. 3.3.6, and Lemma 3.3.7) will involve the controlling graphs.

Definition 2.5.6 (Equations free of Liouville numbers). Let F be a differential module over C
whose radii are all log-affine along ΓC . We say that F is free of Liouville numbers if the modules
FRobba and End(FRobba) over C satisfy the property (NL) of [CM01].

A differential module over C is called unipotent if it can be obtained as successive extension of
the trivial equation. An unipotent equation coincides with its Robba part, and its index is 0.6 Each
differential equation over C admits a largest unipotent submodule.

Theorem 2.5.7 (Christol-Mebkhout’s index theorem for annuli). Assume that

i) the radii {R∅,i(−,F )}i of F are all log-affine on the segment ]x0,r1 , x0,r2 [,

ii) F is free of Liouville numbers.

Then F has a finite index. Moreover if U denotes its largest unipotent submodule, then for all
i = 0, 1 one has

Hi
dR(C,F ) = Hi

dR(C,U ) , χ(C,F ) = χ(C,U ) = 0 . (2.39)

In particular if C ′ ⊆ C is an open sub-annulus such that ΓC′ ⊆ ΓC , then for all i = 0, 1 one has

Hi
dR(C,F ) = Hi

dR(C ′,F ) , χ(C,F ) = χ(C ′,F ) . (2.40)

Proof. By Corollary 2.5.4 we can assume F = FRobba. The claim is then proved in [CM02, Thm.
12.1] (see also [CM97] and [CM00]), if the residual chracteristic of K is p > 0, and in [Ked13, 3.7.6]
in the general case.

Lemma 2.5.8. Assume that F has log-affine radii along ΓC . If C ′ ⊆ C is a sub-annulus such that
ΓC′ ⊆ ΓC , and if F is a differential equation over C, then F is free of Liouville numbers if and
only if F|C′ is free of Liouville numbers.

Proof. This follows in fact from the definition of the exponents [CM97] or [Ked13, Thm.3.4.16].

2.6 Localization of the partial heights to an elementary tube.

We here investigate the behavior of the Laplacian by localization to an elementary tube.

6Indeed by [Ked10, 5.3.3] one sees that an unipotent module over a disk is always trivial, since the derivation is
surjective.
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Lemma 2.6.1. Let F be a differential equation over X of rank r. Let x ∈ X be a point of type 2,
3, or 4. Let b be a branch out of x, and let Cb be an open annulus which is a section of b. Then

i) If b ∈ ΓS, then ∂bH∅,r(x,F|Cb) = ∂bHS,r(x,F );

ii) If b is contained in a disk Db with boundary x such that Db ∩ ΓS = ∅,7 then

∂bH∅,r(x,F|Cb) = ∂bHS,r(x,F )− h0(F , Db) + r ; (2.41)

iii) Let x /∈ ΓS. Let Dx ⊆ X − ΓS be the closed disk with boundary x, and let b∞ is the direction
out of x not in Dx. Then

∂b∞H∅,r(x,F|Cb) = ∂b∞HS,r(x,F ) + h0(F , D†x)− r . (2.42)

Proof. All the statement are deduced from Proposition 1.3.6. i) is immediate.

ii) The restriction from X to Db leave unchanged the slopes of the radii along a germ of open
segment ]y, x[ representing b. While the restriction to Cb adds +1 to the slopes of the radii corre-
sponding to the indexes i such that RS,i(−,F ) is spectral all over ]y, x[, and it leaves unchanged
the slopes of the radii coming from the solutions of F on Db (i.e. the radii RS,i(−,F ) that are
over-solvable over ]y, x[).

iii) As above restriction from X to D†x leave unchanged the slopes of the radii along b∞. Now since
b∞ is directed in the opposite direction with respect to the others branches out of x, the restriction
to Cb adds −1 to the slopes of the radii corresponding to the indexes i such that RS,i(−,F ) is
spectral at x, and it leaves unchanged the slopes of the radii that are over-solvable at x.

Proposition 2.6.2. Let F be a differential equation over X of rank r. Let x be a point of type 2
or 3, and let V := VS(x,F ). Then

i) If x /∈ ΓS. Let Dx ⊆ X −ΓS be the closed disk with boundary x, and let b∞ is the direction out
of x not in Dx. Then

ddcH{x},r(x,F|V †) = ddcHS,r(x,F )− r · χ(VS(x,F )†) + h0(F , D†x)−
∑

b∈Sing(x,F )
b 6=b∞

h0(F , Db)

(2.43)

ii) If x ∈ ΓS, then

ddcH{x},r(x,F|V †) = ddcHS,r(x,F ) + r · (NS(x,F )−NS(x))−
∑

b∈Sing(x,F )
b/∈ΓS

h0(F , Db) (2.44)

Proof. This is a direct consequence of Corollary 2.4.6 and Lemma 2.6.1.

2.7 Local Grothendieck-Ogg-Shafarevich formula, following [CM01].

In this section we apply the index results of [CM01] to obtain finite dimensionality of local de Rham
cohomology around a point of type 2 or 3.

In sections 2.7.1, 2.7.2, 2.7.3, we consider possibly non solvable differential equations over the
Robba ring, with log-affine radii, with a regard to the Dwork dual theory applied to equations over
the open unit disk. In section 2.7.4 we consider possibly non solvable differential equations over an
over-convergent elementary tube centered at a point of X.

The results of this section are proved under the following assumption:

7Here x can be a point of ΓS or not.
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Hypothesis 2.7.1. K is algebraically closed and spherically complete, with a residual field K̃ of
characteristic p > 0. In alternative, we assume that K is an unspecified finite extension of a dis-
cretely valued field with residual field of characteristic p > 0. This means that all the claims hold,
up to enlarge K and replace it by a convenient unspecified finite extension of it.

In the statements concerning super-harmonicity we will be able to remove in part such an
assumption because super-harmonicity is insensitive to extensions of the ground field K. So we only
assume that the residual field of K has characteristic p. Part of the material holds without such an
assumption, so in the sequel we explicitly mention if this assumption is necessary or not.

Remark 2.7.2. The results claimed here can certainly be extended to the case in which the residual
field K̃ is of characteristic 0. In fact this case is easier. The difference between characteristic p and
0 only appears when one uses Frobenius techniques. These techniques are used to reduce the value
of the radii, in order to make them explicitly intelligible in a cyclic basis by the result of Young
[You92]. If the residual characteristic is 0, the radii are either solvable or they are already “small”,
and there is no need of Frobenius (cf. [Pul13]). In fact, in this case, the bound that prescribes if a

radius is small is given by limn |n!|1/n0 = 1, where |.|0 is the trivial absolute value on K.

2.7.1 Equations over the Robba ring. The Robba ring is defined as

R = ∪r<1O(C−K(0; r, 1)) ; (2.45)

Let M be a differential module over R of rank r. By Prop. 2.5.2 we know that every differential
module M over the Robba ring admits a Robba part MRobba.8 Moreover Thm. 2.5.7 asserts that if
M is free of Liouville numbers, and if the radii of M are all log-affine, then it has finite index over
R and

χ(R,M) = 0 . (2.46)

We now extend the Christol-Mebkhout definition of irregularity to non solvable modules. This the
first of three definitions of irregularity. This is the first of three definitions of irregularity, the second
(cf. Def. 2.7.10) is given for differential modules over elementary tubes (it is a local definition).
Finally the the global definition (cf. Def. 3.6.2) will involve the controlling graphs.

Definition 2.7.3 (Irregularity over the Robba ring). Let M be a differential module over R such
that the radii of M are all log-affine over ]x0,1−ε, x0,1[ for some ε > 0. We define the irregularity of
M as

Irr(M) := −∂bH∅,r(x,M) , (2.47)

where b is the germ of segment defined by ]x0,1−ε, x0,1[ oriented as inside D−K(0, 1).

Remark 2.7.4. Since M is not necessarily a solvable module over R in the sense of Christol-
Mebkhout,9 then the irregularity Irr(M) can be negative. Indeed we will see that it represents a
certain non trivial index.

2.7.2 Generalized index.

Definition 2.7.5 (Generalized index). Let A,B,C be K-vector spaces such that B = A⊕C. Denote

8Let i be the smallest index satisfying the Robba property (cf. Def. 2.5.1). Up to restrict ε, i separates the radii over
]x0,1−ε, x0,1[ so we can apply Prop. 2.5.2.
9A differential module over R is solvable module in the terminology of Christol-Mebkhout if limρ→1− R∅,1(x0,ρ,M) = 1.
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by

A
γ+−−→ B

γ+−−→ A , C
γ−−−→ B

γ−−−→ C . (2.48)

the canonical projections and inclusions. Let u : Bn → Bn be a linear map. We denote by uA :
An → An and by uC : Cn → Cn the following endomorphisms

uA := γ+ ◦ u ◦ γ+ , uC := γ− ◦ u ◦ γ− . (2.49)

We define then the generalized index of u as

χgen(A, u) := dimK Ker(uA)− dimK Coker(uA) , (2.50)

χgen(C, u) := dimK Ker(uC)− dimK Coker(uC) . (2.51)

We say that u has a generalized index on A (resp. C) if Ker(uA) and Coker(uA) (resp. Ker(uC)
and Coker(uC)) are finite dimensional.

Let D := D−K(0, 1) be the open unit disk. Denote by D∞ the open disk which is the complement
in P1

K of the closed unit disk D := D+
K(0, 1).

Consider the sequence

0→ O(D)→ R→ H† → 0 (2.52)

where

H† := T−1O†(D∞) := {
∑
n6−1

anT
n , an ∈ K , lim

n
|an|ρn = 0 , for some unspecified ρ < 1 } .

(2.53)
The elements of H† can be seen as analytic over-convergent functions over D∞ whose value at ∞
is zero. It is also convenient to imagine its elements as microfunctions as explained in [Cre12].

Theorem 2.7.6 ([CM00, 8.2-4]). Assume that K is spherically complete. Let u : Rn → Rn be a
n× n matrix with entries in R〈d/dT 〉. Then u has a finite index if and only if uO(D) and uH† both
have a finite index. In this case one has

χ(u,R) = χgen(O(D), u) + χgen(H†, u) . 2 (2.54)

As a direct consequence of (2.46) we have

Proposition 2.7.7. Let M be a differential module over R which is free of Liouville numbers, and
whose radii are all log-affine over ]x0,1−ε, x0,1[. Then ∇ : M → M has a finite generalized indexes
and one has

χgen(O(D),∇) = −χgen(H†,∇) . (2.55)

If moreover there exists a differential module M0 over O(D) such that M = M0 ⊗O(D) R, ∇ =
∇0 ⊗ 1 + 1⊗ d/dT , then ∇0 has a finite index over O(D) and one has

χgen(O(D),∇) = χ(O(D),∇0) . (2.56)

Proof. The first part is immediate from (2.46) and Theorem 2.7.6. For the second it is enough to
observe that ∇0 coincides with the truncated map ∇O(D) obtained from ∇ as per (2.49).

2.7.3 Dwork dual theory. Let M0 be a differential module over O(D), let M := M0 ⊗O(D) R

and M∞ := M0 ⊗O(D) H†. We have an exact sequence :

0→ M0 → M→ M∞ → 0 . (2.57)
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The connection of M commutes by construction with that of M0, and induces an operator ∆∞ :
M∞ → M∞ which is far from being a connection (it is in fact the dual map of a connection).

As firstly observed by Dwork the K-vector space M∞ is the topological dual vector space of M∗0
in the sense of [Rob84, 8.2], [Cre98, Section 5], [CM00, 2.1]. This is a particular case of cohomology
with support [Chi90], [Ked06]. This holds over any ultrametric complete valued field K (cf. [Chr12,
Thm. 5.7]).

More precisely for all ε > 0 the K-vector space O(C−K(0; 1− ε, 1)) is of Fréchet type (a space of
type F) that is a complete locally convex metric space. The ring R is a LF-space i.e. a separated
locally convex space which is inductive limit of a countable family of vector spaces of Fréchet type.
The space H† is also LF , and the Robba ring is the topological direct sum of O(D) and H†.

The Robba ring is the dual of itself by the perfect pairing 〈., .〉 : R×R→ K defined by

〈f, g〉 := Res(f · g) . (2.58)

In this duality O(D) is the dual of H†. We can extend this definition to a free differential module
by choosing a basis of M (i.e. an isomorphism M

∼→ Rr).

Theorem 2.7.8 ([Rob84, 8.2]). Let M be a free differential module over R. The adjoint endomor-
phism of ∇ : M→ M under 〈., .〉 is −∇∗ : M∗ → M∗. Moreover if M comes by scalar extension from
a differential module M0 over O(D), then the adjoint of ∆∞ : M∞ → M∞ is −∇∗0 : M∗0 → M∗0. In
particular H1

dR(O(D),M∗0) is finite dimensional, and we have

dim Ker(∆∞) = dim Coker(∇∗0) (2.59)

dim Coker(∆∞) = dim Ker(∇∗0) . 2 (2.60)

Proof. The original statement of Robba was stated under the assumption that H1
dR(O(D),M∗0) is

finite dimensional, but this is true by Christol-Mebkhout’s Proposition 2.7.7.

2.7.4 Local cohomology over a tube.

Definition 2.7.9 (Robba ring at a branch). Let x be a point of type 2, and lat b be a branch out of
x. We call the Robba at b the ring

Rb =
⋃
C

O(C) (2.61)

where C runs in the family of open virtual annuli that are sections of b (cf. section 1.1.1).

If M is a differential module over OX,x, we denote by Mb the restriction of M to Rb.

Definition 2.7.10. Let x ∈ Int(X) be a point of type 2. Let b be a branch out of x. Let M be a
differential module over OX,x. We define the irregularity of M at b as

Irrb(M) := Irr(Mb) = −∂bH∅,r(x,Mb) , (2.62)

where Mb is the restriction of M to Rb, and b is directed as outside x.

Definition 2.7.11 (Equation free of Liouville numbers). Let x ∈ X be a point of type 2. Let F be
a differential equation over X, or over an elementary tube V centered at x. We say that F is free
of Liouville numbers at x if for all branch b ∈ Sing(x, V ) out of x the module Fb is free of Liouville
numbers (cf. Def. 2.5.6).

If x ∈ X is a point of type 3 or 4, we say that F is free of Liouville numbers at x if after scalar
extension to XΩ the equation FΩ is free of Liouville numbers at the peaked point σΩ(x) ∈ XΩ of
[PP13, 2.1.2] (cf. [PP12]).
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Remark 2.7.12. If b /∈ Sing(x,F ), then Fb is automatically free of Liouville numbers. Indeed the
radii are all constant over Db, so the solvable part F>sol

b of Fb is trivial.

Theorem 2.7.13 ([CM01, Thm. 5.0-10]). Assume that K satisfies Hypothesis 2.7.1. Let x ∈ Int(X)
be a point of type 2. Let M be an over-convergent isocrystal over an elementary tube V centered at
x, which is free of Liouville numbers. Then the kernel and the cokernel of ∇ : M → M are finite
dimensional over K, and one has the Grothendieck-Ogg-Shafarevich formula:

χ(V †,M) = rank(M) · χ(V †)−
∑

b∈Sing(x,V )

Irrb(M) . 2 (2.63)

Remark 2.7.14. The sum of the irregularities appearing in (2.67) can also be written as

χ(V †,M) = rank(M) · χ(V †) + ddcH{x},r(x,M) . (2.64)

Indeed, by Remark 2.3.2, the non singular branches out of x do not contribute to the Laplacian.

Lemma 2.7.15. Under the assumptions of Theorem 2.7.13, there exists a basic neighborhood U of
V such that χ(U,M) = χ(V,M).

Proof. Choose U small enough in order that C := U −V is a disjoint union of open annuli on which
all the radii are log-affine. For all basic neighborhood V ⊂ U ′ ⊆ U we set C ′ := U ′ − V . Then
U = U ′ ∪ C, and U ′ ∩ C = C ′. All these open subsets are quasi-Stein, and we can consider the
Mayer-Vietoris sequence (cf. section 3.2)

0→ H0
dR(U,F )→ H0

dR(U ′,F )⊕H0
dR(C,F )→ H0

dR(C ′,F )→ (2.65)

→ H1
dR(U,F )→ H1

dR(U ′,F )⊕H1
dR(C,F )→ H1

dR(C ′,F )→ 0 . (2.66)

Now by Theorem 2.5.7, for i = 0, 1, we have isomorphisms Hi
dR(C,F )

∼→ Hi
dR(C ′,F ). Hence also

Hi
dR(U,F )

∼→ Hi
dR(U ′,F ). Since de Rham cohomology commutes with inductive limits we also have

Hi
dR(U,F )

∼→ Hi
dR(U ′,F )

∼→ Hi
dR(V †,F ).

The following proposition shows that, up to replace V by VS(x,F ), the G.O.S formula holds for
general (possible non solvable) differential modules over O†(V ).

Proposition 2.7.16. Assume that K satisfies Hypothesis 2.7.1. Let x ∈ Int(X) be a point of type
2. Let M be a differential module of rank r over an elementary tube V centered at x, such that

i) Γ{x}(M) = ΓU for some basic neighborhoods U of V (i.e. the radii R{x},i(x,M) are all constant
functions on V );

ii) M is free of Liouville Numbers at x.

Then the kernel and the cokernel of ∇ : M → M are finite dimensional over K, and one has the
Grothendieck-Ogg-Shafarevich formula:

χ(V †,M) = r·χ(V †)−
∑

b∈Sing(x,V )

Irrb(M) = r·χ(V †)+ddcH{x},r(x,M) . (2.67)

Proof. By Proposition 2.2.3, condition i) guarantee that M splits over V as 0 → M>sol → M →
M<sol → 0. Let r>s, r, r<s be the ranks of M>sol, M, M<sol respectively. By Proposition 2.4.5 one
has χ(M<sol, V †) = 0, so by (2.64) one has

χ(V †,M) = χ(V †,M>sol) = r>sχ(V †) + ddcH{x},r>s(x,M
>sol) . (2.68)

On the other hand by Theorem 1.4.2 one has ddcH{x},r<s(x,M
<sol) = −r<s·χ(V †). Since ddcH{x},r(x,M) =

ddcH{x},r<s(x,M
<sol) + ddcH{x},r>s(x,M

>sol) the claim follows.
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2.8 Applications to super-harmonicity

In this section we apply the above index results to prove a super-harmonicity statement of the
partial heights HS,i(−,F ) of F . We mainly focus on points x /∈ ΓS , because we can not hope to
have super-harmonicity at the points of S.

Definition 2.8.1. For every i ∈ {1, . . . , r}, set

ES,i(F ) := {x ∈ X | ddcHS,i(x,F ) > 0} . (2.69)

In the sequel, if no confusion is possible, we write ES,i := ES,i(F ) for short.

Proposition 2.8.2. Assume that K satisfies Hypothesis 2.7.1. Let F be a differential equation over
X or rank r. Let x ∈ Int(X) be a point of type 2, and let V := VS(x,F ). Assume that F is free of
Liouville numbers at x. Then the following hold:

i) If x /∈ ΓS, and if Dx denotes the closed disk in X − ΓS with boundary x, then

ddcHS,r(x,F ) = χ(V †,F )− h0(D†x,F ) +
∑

b∈Sing(x,F )
b6=b∞

h0(Db,F ) , (2.70)

where b∞ is the direction out of x that do not belongs to the closed disk with boundary x.

ii) If x ∈ ΓS, then

ddcHS,r(x,F ) = χ(V †,F )− r · χ(x, S) +
∑

b∈Sing(x,F )
b/∈ΓS

h0(Db,F ) , (2.71)

where χ(x, S) := −(2g(x)− 2 +NS(x)) (cf. Def. 1.1.13).

Proof. The statement is a direct consequence of Propositions 2.6.2, and 2.7.16.

Proposition 2.8.3. Assume that the residual field of K has characteristic p > 0. Let F be a
differential equation over X or rank r. Let x /∈ ΓS. Assume that F is free of Liouville numbers at
x, and that the radii {RS,i(x,F )}i=1,...,r are all solvable or over-solvable at x. Then HS,r(−,F ) is
super-harmonic at x, i.e.

x /∈ ES,r . (2.72)

Proof. We can assume that K is algebraically closed and spherically complete. Let Dx ⊂ X be the
closed disk whose boundary is x.

Since the first radius has the concavity property (cf. [PP13, point iv) of Remark 6.1.3]), then F
is trivial over every open disk with boundary x, and x is an end point of ΓS(F ). So VS(x,F ) = Dx,
and (2.70) gives

ddcHS,r(x,F ) = −h1(D†x,F ) 6 0 . (2.73)

Proposition 2.8.4. Assume that the residual field of K has characteristic p > 0. Let F be a
differential equation over X or rank r. Let x /∈ ΓS. Assume that

i) F is free of Liouville numbers at x,

ii) i separates the radii of F at x,

iii) i is solvable at x.

iv) x is an end point of ΓS,i(F ).
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Then HS,i(−,F ) and HS,r(−,F ) are both super-harmonic at x, i.e.

x /∈ (ES,i ∪ ES,r) . (2.74)

Proof. We can assume that K is algebraically closed and spherically complete. Let Dx be the
closed disk with boundary x. We claim that i separates the radii of F over Dx. Indeed assume,
by contrapositive, that for some y ∈ Dx one has RS,j(y,F ) = RS,i(y,F ) = RS,i(x,F ). Since
RS,i(−,F ) is constant on the connected component D′ of Dx − {x} containing y, then D′ =
DS,i(y,F ) = DS,j(y,F ) ⊆ Dc

S,j(y,F ) by [PP13, (2.27)]. This implies that RS,j(y,F ) = RS,i(y,F )
on the whole connected component of Dx − {x} containing y. This is absurd because i separates
the radii at x. So i separates the radii on the whole Dx.

By continuity i separates the radii over D†x, and we have a decomposition 0 → (F|D†x)>i →
F|D†x → (F|D†x)<i → 0. One sees that Dx = V∅(x, (F|D†x)>i), hence as in (2.73) one has

ddcH∅,r−i+1(x, (F|D†x)>i) = −h1(D†x, (F|D†x)>i) 6 0 , (2.75)

where r − i+ 1 = rank(F|D†x)>i. Now write

ddcHS,i(x,F ) = ddcHS,i−1(x,F ) + ddcRS,i(x,F ) . (2.76)

We observe that ddcHS,i−1(x,F ) = 0 by Theorem 1.4.2. Moreover

ddcRS,i(x,F ) = ddcR∅,i(x,F|D†x) = ddcR∅,1(x, (F|D†x)>i) 6 0 . (2.77)

This proves that x /∈ ES,i. Finally from (2.75) we obtain

ddcHS,r(x,F ) = ddcHS,i−1(x,F ) +
r∑
j=i

ddcRS,j(x,F ) (2.78)

=
r∑
j=i

ddcR∅,j(x,F|D†x) =
r−i+1∑
j=1

ddcR∅,j(x, (F|D†x)>i) (2.79)

= ddcH∅,r−i+1(x, (F|D†x)>i) = −h1(D†x, (F|D†x)>i) 6 0 . (2.80)

This means that x /∈ ES,r.

Corollary 2.8.5. Assume that the residual field of K has characteristic p > 0. Let F be a differ-
ential equation over X or rank r = 2. Let x /∈ ΓS. If F is free of Liouville numbers at each point
of CS,2(F ), then

ES,1 ∪ ES,2 ⊆ S . (2.81)

Proof. ES,1 ⊆ S because RS,1(−,F ) has the concavity property of [PP13, point iv) of Remark
6.1.3]. Now (ES,2 − S) ⊆ CS,2, and by definition i = 2 is solvable at the points x ∈ CS,2. If i = 1 is
solvable too at x, then apply Proposition 2.8.3. If i separates the radii at x, then apply Proposition
2.8.4.

The following Theorem provides the full super-harmonicity under some quite strong assumptions.
Recall that we already have the super harmonicity of HS,i(−,F ) outside S ∪ CS,i(F ). If x ∈ S we
can not have super-harmonicity.

Theorem 2.8.6. Assume that the residual field of K has characteristic p > 0. Let F be a differential
equation over X or rank r. Let x ∈ CS,r(F ), let Dx be the closed disk in X − ΓS with boundary x,
and let V = VS(x,F ). Assume that

i) the canonical inclusion H0
dR(D†x,F ) ⊆ H0

dR(V †,F ) is an equality;
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ii) for all i one has RS,i(−,F ∗) = RS,i(−,F );

iii) F is free of Liouville numbers at x (cf. Def. 2.7.11).

Then for all i = 1, . . . , r the partial height HS,i(−,F ) is super-harmonic at x.

Proof. We can assume that K is algebraically closed and spherically complete. We firstly prove the
claim for the vertexes of the reversed convergence Newton polygon, and then deduce the claim for
the other vertexes by interpolation.

Vertexes. Let i be a vertex of the reversed convergence Newton polygon (cf. Def. 1.2.9).

By Theorem 1.4.2 if i is spectral non solvable at x, or if x /∈ CS,i(F ), then ddcHS,i(x,F ) 6 0,
and and we are done. So we can assume that x ∈ CS,r(F ), that i is solvable or over-solvable at x,
and that there exists at least an index j 6 i which is solvable at x (see the definition of CS,r).

Since i is a vertex, then isol
x 6 i. If isol

x < i, we have a decomposition

0→ (F|D†x)>isolx +1 → F|D†x → (F|D†x)<isolx +1 → 0 (2.82)

satisfying for all isol
x 6 j 6 i

ddcHS,j(x,F ) = ddcH∅,j(x,F|D†x) = ddcH∅,isolx (x,F|D†x) = ddcH∅,isolx (x, (F|D†x)<isolx +1) . (2.83)

Indeed over-solvable radii does not contribute to the Laplacian. So we can assume moreover that
X = D†x, S = ∅, and i = isol

x = r.

Let V := VS(x,F ), and let b∞ ∈ Sing(x, V ) be the direction not belonging to Dx. Now we
consider the following commutative diagram with exact rows

0 // O†(Dx)

��

// O†(V ) //

��

⊕b∈SH†b // 0

0 // ⊕b∈SO(Db) // ⊕b∈SRb
// ⊕b∈SH†b // 0

(2.84)

where S := Sing(x, V ) − {b∞}, and H†b := (T − cb)−1O†(P1,an
K − Db) as in (2.52). From the first

exact sequence we obtain, by the snake diagram, the long exact sequence

0→ H0
dR(D†x,F )

∼→ H0
dR(V †,F )→ Ker(∆∞)→ H1

dR(D†x,F )→ H1
dR(V †,F )→ Coker(∆∞)→ 0

(2.85)

where ∆∞ is the endomorphism of ⊕b∈SF ⊗O†(Dx) H
†
b induced by the connection of F (cf. Thm.

2.7.8). The vector spaces are all finite dimensional by the Christol-Mebkhout’s results of sections
2.7.1, 2.7.2, 2.7.3. By the assumption i) the first arrow of (2.85) is a bijection, so that

dim Ker(∆∞) 6 h1(D†x,F ) . (2.86)

We then have

h1(V †,F ) = h1(D†x,F )− dim Ker(∆∞) + dim Coker(∆∞) . (2.87)

By duality one has dim Coker(∆∞) =
∑

b∈S h
0(Db,F

∗) (cf. Thm. 2.7.8). Equation (2.70) then
becomes

ddcHS,r(x,F ) = −h1(F , V †) +
∑
b∈S

h0(F , Db) (2.88)

= −h1(D†x,F ) + dim Ker(∆∞)−
∑
b∈S

h0(Db,F
∗) +

∑
b∈S

h0(Db,F ) (2.89)

The assumption of compatibility with the dual gives
∑

b∈S h
0(DbF

∗) =
∑

b∈S h
0(Db,F ), so ddcHS,r(x,F ) 6

0 by (2.86).
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Other indexes. If i is not a vertex the claim follows by interpolation. Namely we proceed as
follows

Lemma 2.8.7. Let f, g : X → R be two functions. Assume that

i) ddcf(x) 6 0,

ii) g 6 f along all germ of segment out of x,

iii) g(x) = f(x),

then ddcg(x) 6 0. 2

Let k, j, where k < i < j, be the vertexes that are closest to i. Then HS,k(−,F ) and HS,j(−,F )
are both super-harmonic at x. For all i ∈ {1, . . . , r} and all y ∈ X, let vi(y) := logHS,i(y,F ).
Consider the function

f(y) := vk(y) + (i− k) · [vj(y)− vk(y)

j − k
] . (2.90)

This function f is also super-harmonic at x since for a = i−k
j−k we have 0 < a < 1 and f(y) =

a · vj(y) + (1− a)vk(y), so ddcf(x) = a · ddcvj(x) + (1− a)ddcvk(x). Hence

min(ddcvj(x), ddcvk(x)) 6 ddcf(x) 6 max(ddcvj(x), ddcvk(x)) 6 0 . (2.91)

So the function f is super-harmonic at x. Moreover vi 6 f by convexity of the reversed Newton
polygon of F , and vi(x) = f(x). Hence vi = logHS,i(−,F ) is super-harmonic by Lemma 2.8.7.

Corollary 2.8.8. If F satisfies the conditions of Theorem 2.8.6 at all points of CS,r, we have

ES,i ⊆ S , for all i = 1, . . . , r . (2.92)

In this case if X is moreover a smooth geometrically connected projective curve, then, by [PP13,
Cor. 7.2.5], the weighted number of edges of Γ′′S,j(F ) is at most

ES + 2r(g − 1)j(j + 1) , (2.93)

where ES is the weighted number of edges of ΓS, and g is the genus of X. 2

Remark 2.8.9. A general super-harmonicity statement seems to need new methods permitting to
control the “ solvable breaks of the radii going towards the over-solvable side” at the points of
CS,i(F ). As we have seen in the proof of Thm. 2.8.6 the problem is localized at the point x = x0,1 of

the over-convergent open unit disk D†x with empty weak triangulation. The following picture express
the typical example of the “ pathological” situation that we have in mind. We are unable to prove
in full generality that such kind pathologies do not arises.

Here is the picture: r = rank(F ) = 3, x = x0,1, D†x = D+(0, 1)†:

•

log(1 + ε)

Here H∅,3(−,F ) is not super-harmonicSolvability line

(2.94)

The picture express the functions ρ̃ 7→ logR∅,i(x0,exp(ρ̃),F ), where ρ̃ = log(ρ) ∈] −∞, log(1 + ε)[.
At the left hand side of the solvability line the radii are all over- solvable, hence constant. At the
right hand side of the line the radii are spectral non solvable.
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3. Global measure of the irregularity.

In this section we study the global de Rham cohomology of F . In particular we are interested in
proving its finite dimensionality, and establish its index formula. For this we introduce a canonical
weak triangulation SF , and a canonical covering of X, built from the controlling graphs, which
permit to compute the de Rham cohomology via the Čech complex. The fact that there exists a
finite canonical covering is encoded in the structure of the controlling graph ΓS(F ). We call this
property essential finiteness of ΓS(F ). As explained in the introduction the essential finiteness of
ΓS(F ) will imply the finite dimensionality of the de Rham cohomology, and the index formula.

In the case where the graph γS(F ) do not have that property, but the curve is “approachable”
by a countable family of quasi-Stein sub-spaces Xn, where the controlling graph is finite, then we
are able to obtain a limit formula expressing the global cohomology as a limit of the equations over
the Xn. In this case the process proves that we have finite dimensionality of the global cohomology
over X if and only if the sequence of indexes over the Xn are constant for all n large enough.
And we are able to show that if the cohomology is finite dimensional the the controlling graph is
essentially finite, which constitutes a converse of the above statement.

All along section 3 we assume that K satisfies hypothesis 2.7.1.

3.1 The Christol-Mebkhout limit formula.

In this section we show that if X is a quasi-Stein curve that can be approached by a family of quasi-
Stein curves (Xα)α, then the de Rham cohomology of a differential equation F can be recovered
as the limit of the de Rham cohomologies of its restrictions to Xα. The fundamental assumption
here is the finite dimensionality of the cohomology of F over the Xα’s, indeed the fact that Xα is
Fréchet implies that H1

dR(Xα,F ) is separated, which the crucial step.

This technique have been introduced by Christol-Mebkhout over annuli (cf. [CM00]), and it
essentially follows from [Gro61, Chap.0, 13.2.4].

Assume that the connected curve X is a quasi-Stein space. Assume that there exists a filtering
ordered set Λ admitting a countable subset which is cofinal in Λ, and an inductive limit of connected
curves10 (Xα)α∈Λ {Xα}α∈Λ such that :

i) for all α, Xα is a quasi-Stein space. In particular O(Xα) is a Fréchet space;

ii) there exists β ∈ Λ such that for all α > α′ > β, the restriction map O(Xα) → O(Xα′) is
injective, with dense image, and uniformly continuous with respect to the metric structures
that make them Fréchet spaces;

iii) one has O(X) = lim←−α O(Xα) as locally convex vector spaces.

Remark 3.1.1. This is the typical situation satisfied by a quasi-Stein space (cf. Def. 1.1.6).

In the following theorem we compute H1
dR(X,F ) as the limit of H1

dR(Xα,F ).

Theorem 3.1.2. Let X and {Xα}α as above. Let F be a differential equation over X. Denote by
Fα := F|Xα. Assume that there exists β ∈ Λ such that for all α > β the de Rham cohomology
H1

dR(Xα,Fα) of Fα is finite dimensional. Then

i) The space

H0
dR(X,F ) = lim←−

α

H0
dR(Xα,Fα) (3.1)

10Recall that the word curve here, and everywhere in the paper, means a quasi-smooth K-analytic curve.
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is finite dimensional, and there exists β′ ∈ Λ such that for all α > α′ > β′ the map H0
dR(Xα,Fα)→

H0
dR(Xα′ ,Fα′) is an strict isomorphism;

ii) For all α ∈ Λ, the quotient topology of H1
dR(Xα,Fα) induced by the projection Fα(Xα)

∇−→
Fα(Xα)→ H1

dR(Xα,Fα) is separated;

iii) there exists β ∈ Λ such that for all α > α′ > β the map H1
dR(Xα,Fα) → H1

dR(Xα′ ,Fα′) is
surjective;

iv) One has

H1
dR(X,F ) = lim←−

α

H1
dR(Xα,Fα) , (3.2)

and the canonical maps H1
dR(X,F )→ H1

dR(Xα,Fα) are surjective.

In particular H1
dR(X,F ) is finite dimensional if and only if the sequence of the dimensions dim H1

dR(Xα,Fα)
(or equivalently the indexes χ(Xα,Fα)) is constant for all α large enough, and we have

χ(X,F ) = lim
α
χ(Xα,Fα) . (3.3)

Proof. i) Projective limits commute with kernels. The dimension of each kernel is as usual bounded
by dim F . For α > α′ large enough the map O(Xα)→ O(Xα′) is injective, so the H0

dR(Xα,Fα)→
H0

dR(Xα′ ,Fα′) are injective too. The sequence of the dimensions of the spaces {H0
dR(Xα,Fα)}α is

then decreasing, and hence the maps are isomorphisms for all α large enough.

ii) The topology of H1
dR(Xα,Fα) is separated because O(Xα) is Fréchet, and Fréchet spaces

have the Banach’s property [CM95, Theorem 4].

iii) For all α > α′ large enough the restrictions O(Xα) → O(Xα′) have dense image, then the
induced map H1

dR(Xα,Fα)→ H1
dR(Xα′ ,Fα′) also have dense image. Since these are separated finite

dimensional spaces, then the restriction is surjective.

iv) We then have a system of exact sequences 0 → H0
dR(Xα,Fα) → Fα(Xα)

∇−→ Fα(Xα) →
H1

dR(Xα,Fα)→ 0. Let Aα be the image of ∇. We have a system of exact sequences

0→ Aα → Fα(Xα)→ H1
dR(Xα,Fα)→ 0 . (3.4)

Since H1
dR(Xα,Fα) is separated, Aα is closed in the Fréchet space Fα(Xα), and the connection ∇

is a strict map by [Bou87, I, par. 3, N.3, p. I.19, Cor.3]. Now since, for all α > α′ large enough, the
map Fα(Xα) → Fα′(Xα′) is dense, then so does Aα → Aα′ , because ∇ : F (Xα) → Aα is a strict
surjective morphism. This proves that the system {Aα}α verifies the Mittag-Leffler condition (ML′)
for projective systems of complete metric spaces with dense image (cf. [Gro61, Chap.0, 13.2.4]).

So we can apply [Gro61, Chap.0, 13.2.2 and 13.2.4] to the system (3.4) to obtain (3.2). Moreover
since, for all α > α′ large enough, the maps H1

dR(Xα,Fα)→ H1
dR(Xα′ ,Fα′) are surjective, then so

does the maps H1
dR(X,F )→ H1

dR(Xα,Fα), for all α large enough.

Remark 3.1.3. Of course the major application in the paper will be the case where X is quasi-Stein
covered by a sequence Xn as in definition 1.1.6.

3.2 Mayer-Vietoris.

Let U, V ⊆ X be two open subsets. Recall that the de Rham cohomology of F is by definition the
hypercohomology of the complex of sheaves E(F )· : F → F ⊗ Ω̂1

X/K in the sense of the theory of
sheaves. We then have the Mayer-Vietoris long exact sequence

· · · → Hi−1(U ∩ V, E ·)→ Hi(X, E ·)→ Hi(U, E ·)⊕Hi(V, E ·)→ Hi(V ∩ U, E ·)→ Hi+1(X, E ·)→ · · ·
(3.5)
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Lemma 3.2.1. Let E · be a complex of coherent OX-modules over X. Assume that for all i ∈ Z the
spaces Hi(U, E ·), Hi(V, E ·), Hi(U∩V, E ·) are finite dimensional. Then Hi(X, E ·) is finite dimensional.

Proof. The term Hi(X, E) fits between two finite dimensional spaces in (3.5).

From the lemma we deduce the following

Proposition 3.2.2. Assume that X admits a finite covering by open subsets U1, . . . , Un such that
H1

dR(Ui,F ) and {H1
dR(Ui1 ∩ · · · ∩ Uin ,F )}i1,...,in∈{1,...,n}, are all finite dimensional (cf. Def. 2.4.2).

Then the de Rham cohomology group H1
dR(X,F ) is finite dimensional. 2

3.3 Canonical triangulation, canonical covering, and Liouville numbers

Since K is spherically complete, there are no points of type 4.

Definition 3.3.1 (Canonical triangulation). We call canonical triangulation of X relatively to S
and F the minimal weak triangulation

SF (3.6)

of X such that

i) ΓSF
= ΓS(F ),

ii) over each edge I of ΓSF
the radii are all log-affine,

iii) over each edge I each radius RSF ,i(−,F ) is either always solvable over I or never solvable
over I,

The vertexes of ΓSF
are by definition the points of SF .

Remark 3.3.2. The triangulation SF coincides with that of [PP13, Remark 5.6.16] attached to the
clean decomposition of F . Notice also that ii) implies that

ii′) over each edge I one has, for all i < j, either RSF ,i(x,F ) < RSF ,j(x,F ) for all x ∈ I, or
RSF ,i(x,F ) = RSF ,j(x,F ) for all x ∈ I.

Remark 3.3.3. By Proposition 1.3.5 we also have ΓSF
= ΓSF

(F ). Hence for all point x ∈ X of
type 2 or 3 we have

VS(x,F ) = VSF
(x,F ) . (3.7)

Definition 3.3.4 (Canonical covering). We say that a covering U = {Ui}i of X is an S-canonical
covering for F if:

i) There exists in U a family A(U) ⊆ U of open subsets such that:

(a) Every element of A(U) is an open pseudo-annulus with skeleton in ΓS(F ) (cf. Def. 1.1.8),
(b) For all U ∈ A(U) that the radii of F are all log-affine on the skeleton of ΓU ,
(c) the intersection of two distinct elements of A(U) is empty,
(d) The set of points s(U) := ΓS(F )− ∪U∈A(U)ΓU is locally finite in X contained in SF .

ii) For all x ∈ s(U) there exists an unique open in Ux ∈ U containing x. Moreover Ux verifies:

(a) Ux is a basic neighborhood of VSF
(x,F ) that does not contain any other point of SF ;

(b) If x ∈ Int(X), then Ux is small enough in order that the index of F|Ux coincides with

χ(F , VSF
(x,F )†), and so it is given by (cf. Theorem 2.7.13 and Lemma 2.7.15)

χ(F , Ux) = rank(M) · χ(VSF
(x,F )†)−

∑
b∈Sing(x,F )

Irrb(F ) ; (3.8)
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(c) Assume that x lies in the boundary of X. Then Ux is a star-shaped open neighborhood of x
in X, endowed with its canonical triangulation SUx = {x}, which is small enough in order
that the radii of F|Ux are all spectral non solvable at the skeleton Γ{x} ⊆ U of SUx in order
to fulfill the assumptions of Proposition 2.4.3.

It is understood that if one of the radii of F is not spectral non solvable at a point x of the
boundary of X, then there are no canonical coverings for F .

iii) For all Ui 6= Uj ∈ U one has Ui ∩ Uj 6= Ui, Uj i.e. there are no repetitions in U , and the
intersection of three distinct elements of U is empty.

Remark 3.3.5. The existence of a canonical covering follows immediately from the local finiteness
of the controlling graphs (cf. Thm. 1.3.1). It is clear that a canonical covering is locally finite.

Definition 3.3.6 (Equations globally free of Liouville numbers). We say that F is free of Liouville
numbers over X if its restriction to any annulus C in X is free of Liouville numbers (cf. Definition
2.5.6).

The following Lemma asserts that the (NL) condition can be tested on a locally finite family of
annuli, depending on F , which is relatively small.

Lemma 3.3.7. Let U be a canonical covering for F . Assume that for all pseudo-annulus U ∈ A(U),
there exists at least a germ of segment b in the skeleton ΓU such that the restriction of F to the
Robba ring Rb is free of Liouville numbers in the sense of Definition 2.5.6. Then F is free of
Liouville numbers over X.

Proof. Let C be an annulus in X. By Lemma 2.5.8 we can restrict C if necessary. So we can assume
either that ΓC ⊂ ΓU for some pseudo-annulus U ∈ A(U), or that ΓC ∩ ΓSF

= ∅. If ΓC ⊂ ΓU , then
Lemma 2.5.8 gives the result. Indeed, if bU ⊂ ΓU is the germ of segment on which F is free of
Liouville numbers, there exists an annulus C ′ in U such that b,ΓC ⊆ ΓC′ ⊆ ΓU . If ΓC ∩ ΓSF

= ∅,
then C is contained in a disk on which the radii are all constant. Hence the Robba part of F|C is
trivial (cf. Proposition 2.4.3), and so F is free of Liouville numbers at C.

As an application of Theorem 3.1.2 we have the following generalization of the Christol-Mebkhout
index theorem over annuli (cf. Thm. 2.5.7):

Theorem 3.3.8. Let X be a pseudo-annulus. Let F be a differential equation over X such that

i) The radii are all log-affine over the skeleton of X;

ii) F is free of Liouville numbers.

Then F has finite dimensional de Rham cohomology. For i = 0, 1 the dimension of Hi
dR(X,F ) is

bounded by the rank of F , and we have χ(F , X) = 0.

Proof. By Remark 1.1.9, X is an increasing union of closed annuli. It may also been written as an
increasing union of open annuli (Xn)n>0. Since Xn is an annulus, it is a Stein space and O(Xn)
is Fréchet. Moreover, since Xn ⊆ Xn+1 is the inclusion of an annulus in a bigger one, the map
O(Xn+1)→ O(Xn) is injective, uniformly continuous and its image is dense.

So, by Theorem 3.1.2, we have Hi
dR(X,F ) = lim←−n Hi

dR(Xn,Fn). Now by Theorem 2.5.7, for all

n one has dim H0
dR(Xn,Fn) = dim H1

dR(Xn,Fn), so the dimensions of Hi
dR(Xn,Fn) is bounded by

the rank of F and it stabilizes for all n large enough.
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3.4 Global finite dimensionality of the de Rham cohomology I: Essentially finite con-
trolling graphs

The following theorem relates the finiteness of the canonical triangulation SF with the finite di-
mensionality of the de Rham cohomology.

Definition 3.4.1 (Essentially finite controlling graphs). Let F be a differential equation over X.
We say that the controlling graph ΓS(F ) is essentially finite if it contains only finitely many points x
where at least one of the following conditions is satisfied:

i) x ∈ ∂X;

ii) g(x) > 0;

iii) x is a bifurcation point of ΓS(F );

iv) x admits an open annulus C as a neighborhood such that x ∈ ΓC ⊆ ΓS(F ), and some radius
RSF ,i(−,F ) restricted to ΓC has a break at x.

Remark 3.4.2. An essentially finite graph is topologically finite (cf. proof of Lemma 3.4.3), but not
necessarily finite as a graph (since S can be infinite e.g. for a pseudo-annulus). Note that ΓS(F )
can be topologically finite, without being essentially finite (e.g. an interval with an infinite number
of point with non zero genus, or lying in the boundary), nor finite as a graph (e.g. the example of
an open disk with a rational point removed does not admits any finite weak triangulation).

From the definition we immediately have the following

Lemma 3.4.3. ΓS(F ) is essentially finite if and only if there exists a finite canonical covering for
F .

Proof. Assume that ΓS(F ) is essentially finite. Let s ⊆ ΓS(F ) be the finite set of points verifying
one of the conditions of Definition 3.4.1. By construction each connected component U of X − s is
either an open disk, or an open pseudo-annulus with skeleton included in ΓS(F ). The number of
such pseudo-annuli is finite because ΓS(F ) is locally finite, and s is finite. If U is a disk, the radii
RS,i(−,F ) are all constant on it. In the other cases the radii RS,i(−,F ) are all log-linear along its
skeleton, and Theorem 3.3.8 applies to U . Now we can cover each point of x ∈ s by a star-shaped
neighborhood of VS(x,F ) as in point ii) of Definition 3.3.4, and we obtain a finite canonical covering
for F .

Conversely assume that F admits a finite canonical covering U . The set of bad points of Defi-
nition 3.4.1 is included in s(U) which is finite. So ΓS(F ) is essentially finite.

Lemma 3.4.4. If ΓS(F ) is essentially finite, then X is either projective or quasi-Stein.

Proof. The graph ΓS is topologically finite, and since ΓS(F ) is essentially finite, there are a finite
number of points in X verifying one of the conditions i), ii), iii) of Definition 3.4.1. It follows that
X has finite genus. So by [Liu87] X is either quasi-Stein of projective.

Theorem 3.4.5. Let F be a differential equation over X. Assume that

i) the radii of F are all spectral non solvable at the points of the boundary of X,

ii) X admits a weak triangulation S such that ΓS(F ) is essentially finite,

iii) F is free of Liouville numbers over X.

Then the de Rham cohomology of F is finite dimensional.
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Proof. Let U be a finite canonical covering for F (cf. Lemma 3.4.3). The theorem is an easy
consequence of the Mayer-Vietoris sequence (cf. Prop. 3.2.2) since, by construction, U is formed by
a finite number of opens on which the de Rham cohomology is finite dimensional. Namely

i) if Ui is a pseudo-annulus in A(U), then the finite dimensionality of H1
dR(Ui,F ) follows from

Christol-Mebkhout Theorem 3.3.8. This also gives the finite dimensionality of H1
dR(Ui∩Uj ,F ),

since Ui ∩ Uj is always a pseudo-annulus on which Theorem 3.3.8 applies.

ii) if Ui is a basic neighborhood of VSF
(x,F ), for some vertex x ∈ Int(X) of ΓSF

, then the finite
dimensionality of H1

dR(Ui,F ) follows from Proposition 2.7.16.

iii) if Ui is a basic neighborhood of VSF
(x,F ), for some vertex x of ΓSF

that lies in the boundary
of X, then the cohomology is zero by Proposition 2.4.3.

This proves the claim.

The typical application of Theorem 3.4.5 is the following

Corollary 3.4.6. Let X be any quasi-smooth K-analytic curve, and F be a differential equation
over X. Let U be an analytic domain of X such that

i) U is relatively compact in X;

ii) The radii of F are all spectral non solvable at the boundary ∂U of U ;11

iii) F is free of Liouville numbers over U .

Then the de Rham cohomology of F|U is finite dimensional.

Proof. It is enough to prove that U admits a weak triangulation SU such that ΓSU (F ) is essentially
finite. Let S be a weak triangulation of X. Since U is relatively compact, ΓS ∩ U is topologically
finite. Since X − ΓS is a disjoint union of disks D, and since U is an analytic domain in X, then
there are a locally finite number of such disks such that D ∩ U 6= D. Since U is relatively compact
the number of such disks if actually finite, and one sees that there exists a weak triangulation SU
of U such that ΓS ∩U ⊆ ΓSU . By [PP13, Prop. 2.8.2] one has ΓSU (F ) = (ΓS(F )∩U)∪ΓSU . Hence
ΓSU (F ) is topologically finite, because ΓS(F ) is locally finite, and U is relatively compact. Now
the compactness implies that the radii of F have a finite number of breaks, because each radius
has a finite number of breaks over a compact segment. It also implies that one has a finite number
of points x ∈ U such that g(x) > 0, since those points form a locally finite set included in S. Hence
ΓSU (F ) is essentially finite.

Remark 3.4.7. Notice that, in general, U does not admit a finite weak triangulation (e.g. an open
disk with a rational point removed). So in general ΓS′F always has an infinite number of edges. It
is not finite as a graph. This is the reason of the introduction of pseudo-annuli in the picture.

Recall that (F ,∇) is said to be over-convergent on X if there exists a smooth K-analytic curve
(with no boundary) X ′ and a connexion (F ′,∇′) on X ′ such that X embeds into X ′ and (F ′,∇′)
restricts to (F ,∇) on X. In this case, we define the over-convergent de Rham cohomology of F
on X as the inductive limit of the de Rham cohomologies of F ′ on U , where U runs through the
neighborhoods of X in X ′.

From the previous result, we deduce the following

11Here the boundary of U is the absolute boundary ∂U = ∂(U/K), and not the relative boundary ∂(U/X) of U in X.
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Corollary 3.4.8. Assume that F is over-convergent and free of Liouville numbers over X (in
the over-convergent directions too). Then the over-convergent de Rham cohomology of F is finite
dimensional.

Remark 3.4.9 (Essential triangulations and essential graphs). The result of this section suggest the
following generalization of the notion of weak triangulation. A locally finite subset s of X, formed
by points of type 2 or 3, is an essential triangulation if X − s is a disjoint union of virtual open
disks, and open quasi-annuli. A weak triangulation of X is an essential triangulation. Denote by
G the union of s with the skeletons of the pseudo-annuli that are connected components of X − s.
Following [PP13, Appendix A], one sees that G is a weakly admissible graph of X, so one is allowed
to define the radii RG,i(x,F ) with respect to G. Namely, roughly speaking, one defines D(x,G) as
the largest open disk centered at x that do not encounter G, and we imitate the definition (1.2.2).
The interest of such a definition is that a graph ΓS(F ) is essentially finite if and only if there exists
a finite essential triangulation such that ΓS(F ) = G.

3.5 Global measure of the irregularity for equations with finite controlling graphs

We here provide a definition of global irregularity of F , together with a global form of Grothendieck-
Ogg-Shafarevich formula.

Hypothesis 3.5.1. In this section we assume that (X,F ) satisfies the assumptions of Theorem
3.4.5. In particular X admits a weak triangulation S such that ΓS(F ) is essentially finite.

Hypothesis 3.5.1 implies that the graph ΓS is topologically finite. So by Lemma 1.1.11, the open
boundary of X is finite. Moreover, by the assumptions of Definition 3.4.1, the curve X has finite
genus in the sense of Definition 1.1.12. In particular it is either a projective curve, or a quasi-Stein
curve (cf. Remark 1.1.6). We here focus on the case of a quasi-Stein curve.

3.6 Global irregularity

In this section we define the global irregularity os a differential equation with essentially finite graph.

3.6.1 Essential segments of ΓS. If x is a point in the boundary ∂X of X, then we define

seg(ΓS , ∂X) (3.9)

as the family formed by germ of segments out of x ∈ ∂X belonging to ΓS . In analogy with germs
in the open boundary of X, we say that the elements of seg(ΓS , ∂X) are germs of segments of ΓS
at the closed boundary of X.

Definition 3.6.1 (Essential germs of segments in ΓS). We call essential germs segments of ΓS the
family of germ of segments

seg(S) := seg(ΓS , ∂X) ∪ ∂oX . (3.10)

3.6.2 Global Irregularity.

Definition 3.6.2 (Global Irregularity). Assume that (X,F ) satisfies the assumptions of Thm.
3.4.5. Let S be any finite weak triangulation of X, and let SF be the corresponding canonical
triangulation of F . We define the global irregularity of F as

IrrX(F ) :=
( ∑
x∈∂X

χ(x, SF )
)
· rank(F )−

∑
b∈seg(SF )

∂bH∅,r(−,F|Rb) , (3.11)
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where Rb is the Robba ring defined by b, and b is oriented as outside X.12

Lemma 3.6.3. The global irregularity IrrX(F ) is independent on the chosen finite weak triangula-
tion S of X.

Proof. Indeed let S′ be another weak triangulation. Considering a triangulation S′′ such that
ΓS ,ΓS′ ⊆ ΓS′′ , one sees that we can assume that ΓS ⊆ ΓS′ . We know that ΓS′F = ΓS′ ∪ ΓSF

as sets (cf. Proposition 1.3.5). We then can assume that SF = S. It is enough to prove that the
addition of a point s ∈ ΓSF

to SF , and the further addition of a new edge branched at a point of
SF do not change IrrX(F ). Since ∂X ⊂ SF , then s /∈ ∂X, and the addition of s does not affect
IrrX(F ) at all. The addition of a new segment branched at a point s of SF , produces a change in
the sum if and only if s ∈ ∂X. In this case χ(s, SF ) and the number of essential segments increase
of 1, so there is one more term −∂b0H∅,r(−,F|Rb) corresponding to the new essential segment b at
x. Now −∂b0H∅,r(−,F|Rb) = −r because all the radii RSF ,i(x,F ) are constant over the new branch
b, and spectral non solvable at x.

3.6.3 Grothendieck-Ogg-Shafarevich formula. The following theorem constitutes the analogue
of the Grothendieck-Ogg-Shafarevich formula. Recall that by Lemma 3.4.4, under the assumptions
of Theorem 3.4.5, X is either projective or quasi-Stein.

Theorem 3.6.4. Assume that X is not projective. Under the assumptions of Theorem 3.4.5 one
has

χ(X,F ) = rank(F ) · χ(X)− IrrX(F ) . (3.12)

Proof. The de Rham cohomology equals the kernel and the cokernel of ∇ acting on F (X). Let
U = {U1, . . . , Un} be a finite canonical covering for F (cf. Lemma 3.4.3).

The assumptions of Theorem 3.4.4 imply that X has finite genus. Hence every Ui has finite genus
too. Since X is not projective, Ui cannot be projective either, hence it is quasi-Stein by [Liu87].

Since the Ui are quasi-Stein spaces, the first Čech cohomology group Ȟ1(U ,F ) coincides with
the coherent cohomology group H1(X,F ). Since X is quasi-Stein too, this last group is 0 and the
Čech complex of U is a short exact sequence:

0→ F (X)→
∏

16i6n

F (Ui)→
∏

16i<j6n

F (Ui ∩ Uj)→ 0 . (3.13)

Indeed the intersection of three distinct opens is empty (cf. Def. 3.3.4). The derivation acts on these
three terms, and we have a long exact sequence by the Snake diagram:

0→ H0
dR(X,F )→

∏
i

H0
dR(Ui,F )→

∏
i<j

H0
dR(Ui ∩ Uj ,F )→ (3.14)

→ H1
dR(X,F )→

∏
i

H1
dR(Ui,F )→

∏
i<j

H1
dR(Ui ∩ Uj ,F )→ 0 (3.15)

Remark 3.6.5. The finite dimensionality of H1
dR(X,F ) then follows from that of each H1

dR(Ui,F ),
as in the proof of Theorem 3.4.5.

The intersection of two opens in U is always an open pseudo-annulus verifying Theorem 3.3.8.

12If b ∈ seg(ΓS , ∂X), and if x ∈ ∂X is its boundary point, this means that b is oriented as inside x.
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So it has zero index. Hence the term
∏

16i<j6n F (Ui∩Uj) of the sequence (3.13) has zero index. So

χ(X,F ) =
∑
i

χ(Ui,F ) . (3.16)

Now if Ui is an open pseudo-annulus in A(U) (cf. Def. 3.3.4), then its index is zero again by Thm.
3.3.8. The same happens if Ui is an open neighborhood of a point of s(U) at the boundary of X by
Proposition 2.4.3.

So the sum can be considered over the set of open Ux ∈ U that contains some point x ∈
s(U)∩ Int(X). Let VSF

(x,F ) ⊂ Ux be the canonical elementary tube centered at x. Then index of
Ux is given by

χ(Ux,F ) = rank(F ) · χ(VSF
(x,F ))−

∑
b∈Sing(x,F )

Irrb(F ) (3.17)

= rank(F ) · χ(x, SF )−
∑

b∈Sing(x,F )

Irrb(F ) . (3.18)

If r := rank(F ), the sum (3.16) becomes:

χ(X,F ) =
∑

x∈s(U)−∂X

χ(Ux,F ) =
∑

x∈s(U)−∂X

(
r · χ(x, SF )−

∑
b∈Sing(x,F )

Irrb(F )
)
. (3.19)

If C is a relatively compact pseudo-annulus in A(U), such that both the points at its boundary lie
in Int(X), then the irregularities Irrb(F ) of the two points at its boundary are equal and appear
in both in (3.19), but with opposite sign (because of the orientation of b). This is because the radii
are log-linear over ΓC . The only irregularities Irrb(F ) that remains after cancellation are those
relative to a b belonging to a pseudo-annulus which is either with a boundary in ∂X, or which is
not relatively compact in X. So we have

χ(X,F ) = rχ(X)− r
( ∑
x∈∂X

χ(x, SF )
)

+
∑

b∈seg(SF )

∂bHSF ,r(x,F ) . (3.20)

This proves the claim.

Remark 3.6.6. The proof of Theorem 3.6.4 provides another proof (perhaps more explicit) of The-
orem 3.4.5. Indeed the fact that ΓS(F ) is essentially finite implies that X is a curve of finite genus.
Hence, by a result of Liu (cf. [Liu87]), X is either projective or quasi-Stein. Projective curves are
classic, while the proof of Theorem 3.6.4 gives another proof of the finiteness in the quasi-Stein case.

3.7 Global finite dimensionality of the cohomology II: infinite controlling graphs

In this section we investigate more general situations where the assumption of the essential finiteness
of ΓSF

is dropped. For this we use Christol-Mebkhout limit formula.

Corollary 3.7.1. Let X be a quasi-Stein curve. Let Xn be the sequence of Definition 1.1.3. Let
Fn := F|Xn. Assume that

i) F is free of Liouville number over X.

ii) for all n large enough Xn is a relatively compact in X

iii) for all n large enough, the radii of Fn are all spectral non solvable at the points x of the
boundary of Xn;13

13This is the absolute boundary ∂Xn of Xn, not the relative boundary ∂(Xn/X).
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Then, for all n large enough, Theorem 3.4.5 applies to Fn, and H1
dR(Xn,Fn) is finite dimensional

and Theorem 3.1.2 applies. In particular H1
dR(X,F ) = lim←−n Hi

dR(Xn,Fn) is finite dimensional if

and only if the sequence of the dimensions dim H1
dR(Xn,Fn) (or equivalently the sequence of indexes

χ(Xn,Fn)) is constant for all n large enough, and we have

χ(X,F ) = lim
n
χ(Xn,Fn) . (3.21)

Proof. The assertions follows from Corollary 3.4.6 and Theorem 3.1.2.

Typical examples are the following cases :

i) A pseudo-annulus (resp. disk) covered by a family of relatively compact sub-annuli (resp. disks),

ii) A curve of the form X−{x1, . . . , xn}, n > 1, where X is a smooth, connected, projective curve,
and where x1, . . . , xn are rational points.

The following corollary is useful if the Xn all have the same shape, for example, if we have an open
disk (resp. annulus, punctured disk) covered by open sub-disks (resp. sub-annuli):

Corollary 3.7.2. We preserve the assumptions of Corollary 3.7.1. Assume moreover that the se-
quence χ(Xn) is constant with value χ for all n large enough. In this case H1(X,F ) is finite
dimensional if and only if the sequence IrrXn(Fn) is constant for all n large enough, and (3.21)
becomes

χ(X,F ) = rank(F ) · χ− lim
n

IrrXn(Fn) . (3.22)

2

Corollary 3.7.3 (pseudo-annuli). Let F be a differential equation over a pseudo-annulus X, which
is free of Liouville numbers. Let xn, yn be two sequences of points in skeleton of X approaching the
open boundary of X. Let Cn be the open annulus with skeleton ]xn, yn[.

Then the de Rham cohomology of F is finite dimensional if and only if the sequence of slopes
σ−n := ∂bnH∅,r(xn,F ) and σ+

n := ∂b′nH∅,r(yn,F ) are both constant for all n large enough, where
bn ∈ Cn (resp. b′n ∈ Cn) is a germ of segment out of xn /∈ Cn (resp. yn /∈ Cn) and oriented as
outside Cn (i.e. oriented as into xn and yn respectively). Moreover in this case we have

IrrXn(Fn) = −(σ−n + σ+
n ) > 0 , (3.23)

and

χ(X,F ) = lim
n
χ(Cn,Fn) = lim

n
(σ−n + σ+

n ) 6= −∞ . (3.24)

Proof. Apply Corollaries 3.7.1 and 3.7.2 to X = ∪nCn.

Corollary 3.7.3 is a particular case of the following Theorem 3.7.4 that constitutes a reciprocal
of Theorem 3.4.5.

Theorem 3.7.4. Let X be a quasi-Stein curve with finite genus g(X) admitting a weak triangulation
S whose skeleton ΓS is topologically finite (cf. Def. 1.1.2). Let F be a differential equation free of
Liouville numbers over X, with no solvable radii at the boundary ∂X of X. The following conditions
are equivalent:

i) ΓS(F ) is essentially finite;

ii) the de Rham cohomology of F is finite dimensional;

iii) for all germ of segment b at the open boundary of X, the radii of F have a finite number of
breaks along b.
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Proof. Since ΓS is topologically finite, the open boundary of X is finite. Let b1, . . . , bm be the germs
of segments at the open boundary. For all i let n 7→ xn,i be a strictly monotone sequence of points
along bi approaching the open boundary of X (i.e. going toward outside X). As a notation denote
bi by bi :=]x1,i, x∞,i[ so that ]xn,i, x∞,i[ is a strictly decreasing sequence of segments. Since X has
finite genus, for n large enough ]xn,i, x∞,i[ is the skeleton of a well defined pseudo-annulus Cn,i ⊆ X.
Let An,i be the semi-open pseudo-annulus with skeleton is [xn,i, x∞,i[.

14 Let

Xn := X − (∪mi=1An,i) . (3.25)

Then for all n large enough we have

i) χ(Xn) = χ(X),

ii) Xn is relatively compact in X,

iii) ∂Xn = ∂X,

Moreover, if S is any weak triangulation such that for all n one has S∩]x1,i, x∞,i[= {xn,i}n, then

i) for all n large enough Sn := S ∩Xn is a weak triangulation of X and

ΓSn = ΓS ∩Xn , (3.26)

ii) ΓS(F ) =
⋃
n ΓSn(F|Xn).

It is then clear that ΓS(F ) is essentially finite if and only if for all i the radii of F have a finite
number of breaks along bi.

Now let Un := ∪iCn−1,i so thatX = Xn∪Un is an open covering ofX. The de Rham cohomologies
of F|Xn and of F|Xn∩Un are both finite dimensional by Corollary 3.4.6. Moreover by Corollary 3.7.3
the de Rham cohomology of F|Un is finite dimensional if and only if for all i the radii of F have a
finite number of breaks along bi. The Mayer-Vietoris sequence of the covering Xn ∪ Un
· · · → Hi−1

dR (Xn ∩ Un,F )→ Hi
dR(X,F )→ Hi

dR(Xn,F )⊕Hi
dR(Un,F )→ Hi

dR(Xn ∩ Un,F )→ · · ·
(3.27)

shows that the cohomology of F if finite dimensional if and only if so is that of F|Un .

Remark 3.7.5. Hypothesis 2.7.1 can likely be removed from sections 2 and 3. Indeed it is used only
in the following cases:

i) To fulfill the assumptions of Christol-Mebkhout index Thm. 2.7.13;

ii) To ensure that ΓS(F ) has no points of type 4 in Definition 3.3.1;

iii) When one uses [Liu87] to prove that X is either pojective or quasi-Stein .

The Christol-Mebkhout index result in the case of an annulus (cf. Thm. 2.5.7) have been recently
generalized by Kedlaya [Ked13, Lemma 3.7.6] to an arbitrary base field, and it seems that similar
techniques permit to remove the assumptions about K also in Thm. 2.7.13. On the other hand again
in [Ked13] one proves that ΓS(F ) has no points of type 4.
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Andrea Pulita pulita@math.univ-montp2.fr
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